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The buoyant motion of a bubble rising through a continuous liquid phase can be
retarded by the adsorption onto the bubble surface of surfactant dissolved in the
liquid phase. The reason for this retardation is that adsorbed surfactant is swept to
the trailing pole of the bubble where it accumulates and lowers the surface tension
relative to the front end. The difference in tension creates a Marangoni force which
opposes the surface flow, rigidifies the interface and increases the drag coefficient.
Surfactant molecules adsorb onto the bubble surface by diffusing from the bulk to the
sublayer of liquid adjoining the surface, and kinetically adsorbing from the sublayer
onto the surface. The surface surfactant distribution which defines the Marangoni
force is determined by the rate of kinetic adsorption and bulk diffusion relative to the
rate of surface convection. In the limit in which the rate of either kinetic or diffusive
transport of surfactant to the bubble surface is slow relative to surface convection
and surface diffusion is also slow, surfactant collects in a stagnant cap at the back
end of the bubble while the front end is stress free and mobile. The size of the cap
and correspondingly the drag coefficient increases with the bulk concentration of
surfactant until the cap covers the entire surface and the drag coefficient is that of a
bubble with a completely tangentially immobile surface. Previous theoretical research
on the stagnant cap regime has not studied in detail the competing roles of bulk
diffusion and kinetic adsorption in determining the size of the stagnant cap angle, and
there have been only a few studies which have attempted to quantitatively correlate
simulations with measurements.

This paper provides a more complete theoretical study of and a validating set of
experiments on the stagnant cap regime. We solve numerically for the cap angle
and drag coefficient as a function of the bulk concentration of surfactant for a
spherical bubble rising steadily with inertia in a Newtonian fluid, including both
bulk diffusion and kinetic adsorption. For the case of diffusion-limited transport
(infinite adsorption kinetics), we show clearly that very small bulk concentrations
can immobilize the entire surface, and we calculate the critical concentrations which
immobilize the surface as a function of the surfactant parameters. We demonstrate
that the effect of kinetics is to reduce the cap angle (hence reduce the drag coefficient)
for a given bulk concentration of surfactant. We also present experimental results
on the drag of a bubble rising in a glycerol–water mixture, as a function of
the dissolved concentration of a polyethoxylated non-ionic surfactant whose bulk
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diffusion coefficient and a lower bound on the kinetic rate constants have been
obtained separately by measuring the reduction in dynamic tension as surfactant
adsorbs onto a clean interface. For low concentrations of surfactant, the experiments
measure drag coefficients which are intermediate between the drag coefficient of a
bubble whose surface is tangentially mobile and one whose surface is completely
immobilized. Using the separately obtained value for the diffusion coefficient of the
polyethoxylate, we undertake simulations which provide, upon comparison with the
measured drag coefficients, a tighter bound on the kinetic rate constants than were
otherwise obtained using dynamic surface tension measurement, and this suggests a
new method for the measurement of kinetic rate constants.

1. Introduction
The hydrodynamic motion of bubbles and drops moving through a continuous

liquid phase can be affected by the presence of surfactants in the system. Initial
interest in this subject arose from experimental observations on the terminal velocities
of bubbles and drops moving in ostensibly clean liquids by buoyancy. The experiments
used fluid particles with diameters small enough so that inertial effects were negligible
and the fluid particles translated in straight paths with a near spherical shape. The
measured velocities were found to be less then those predicted by the Hadamard–
Rybczynski theory for inertialess, rectilinear motion of fluid spheres with a mobile
interface; furthermore, as smaller particle diameters were used, the disagreement
increased and the velocities approached the Stokes value for a solid sphere (Bond &
Newton 1928). A review of the early literature on this phenomenon is given by Clift,
Grace & Weber (1978) and recent experiments illustrating this anomalous behaviour
are described by Duineveld (1995) and Takemura & Yabe (1999). Levich (Frumkin &
Levich 1947; Levich 1962) first provided a consistent explanation for these results by
noting that the continuous phase (and the particle phase if the particle is a liquid
drop) contained inadvertent trace amounts of surfactant impurities. As the particle
translates, surfactant diffuses towards and kinetically adsorbs onto the front end of
the bubble and is swept by surface convection to the trailing end where it desorbs and
diffuses back into the bulk. At steady state the convective sweeping causes surfactant
to accumulate at the back end of the particle making the surface concentration of
surfactant at the trailing pole greater than that at the leading pole. As a result of this
distribution, the front end of the particle is of higher tension, and tugs at the back
end, creating a Marangoni force opposing the surface flow. The resulting reduction
in surface mobility decreases the terminal velocity (or alternatively increases the drag
coefficient) as the Marangoni force in effect rigidifies the interface.

Experimental research has, in general, verified the Marangoni mechanism by
which surfactant affects the fluid particle hydrodynamics, and, in particular, Levich’s
explanation of the anomalous velocity measurements. This research includes:
(i) Measurements of terminal velocities of bubbles and drops in experiments in which
precautions were taken to remove surfactant impurities. The results more closely
agreed with either the Hadamard–Rybczynski values or, for experiments using larger
particle diameters, the velocity predictions for clean systems including inertial and
deformation (cf. the references in Clift et al. 1978 and Duineveld 1995). In addition, in
the case of bubbles, experiments have used a continuous non-polar phase (rather than
water) for which impurities, although not removed, do not adsorb as significantly on
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the bubble/non-polar liquid surface (Suzin & Ross 1985; Takemura & Yabe 1999)
and achieved excellent agreement with theory.
(ii) Observations of the reduction in the internal circulation of liquid drops, or
fluid particle oscillations, at increasing bulk concentrations of surfactant intentionally
added to the system. The reduction in circulation and oscillation follows from the
reduction in surface mobility (Savic 1953; Garner & Hale 1953; Garner & Skelland
1955; Garner & Haycock 1959; Elzinga & Banchero 1961; Horton, Fritsch & Kintner
1965).
(iii) Measurements of the decrease in interphase mass transfer between the bubble or
drop phase and the continuous phase as surfactant is added to the system. This is
attributed to the increase in the boundary layer thickness around the fluid particle
and the reduction in internal circulation as the interfacial mobility is decreased by the
adsorption of surfactant (Garner & Hale 1953; Garner & Skelland 1955; Holm &
Terjesen 1955; Lindland & Terjesen 1956; Boye-Christensen & Terjesen 1958; Boye-
Christensen & Terjesen 1959; Raymond & Zieminski 1971; Huang & Kintner 1969;
Beitel & Heideger 1971; Mekasut, Molinier & Angelino 1978; Skelland, Woo &
Ramsay 1987).
(iv) Measurements of the terminal velocities in systems in which surfactants are inten-
tionally added. These invariably show a steady decrease in the terminal velocity with
increasing concentration, until a saturating value is achieved. Many of the previously
mentioned studies of the reduction in the internal circulation or the decrease in
interphase mass transfer observed the reduction in terminal velocity. Other studies in
which the measurement of the terminal velocity as a function of surfactant concentra-
tion was the primary focus of the study include: Griffith (1962), Edge & Grant (1972),
Skelland & Huang (1977), Suzin & Ross (1985), Yamamoto & Ishil (1987), Skelland
et al. (1987), Bel Fdhila & Duineveld (1996), Sam, Gomez & Finch (1996), Jachimska,
Warszynski & Malysa (2001), Zhang & Finch (2001), Zhang, McLaughlin & Finch
(2001), Krzan & Malysa (2002), Zhang, Sam & Finch (2003) and Liao et al. (2004).

Since Levich’s elucidation of the Marangoni mechanism by which surfactant affects
the translation of a fluid particle, significant theoretical progress has been made on
predicting the velocities of surfactant-laden fluid particles. Viewed in perspective, these
studies have shown that the key to predicting the terminal velocity is to understand
and formulate the rates of kinetic and bulk diffusive exchange of surfactant from the
continuous or drop phase to the surface and the rate of surface diffusion. The ratio
of these rates to the rate of surface convection determines the surfactant distribution
on the surface which in turn determines the magnitude of the Marangoni force and
the retardation in the surface mobility.

The theoretical progress has identified three regimes of surfactant transport which
we review here by using scaling arguments for the illustrative case of a bubble with
radius a moving with velocity U in a continuous phase with bulk concentration
C0. Consider in more detail the surfactant transport: surfactant adsorbed onto the
moving bubble surface is convected by the surface flow from the front of the bubble
to its trailing end where the increase in surface concentration, Γ , causes surfactant to
kinetically desorb into the rear sublayer. This desorption locally raises the sublayer
concentration, Cs , at the back to above the bulk value, C0, far from the interface. The
difference drives a diffusive flux away from the trailing end. Similarly at the front
end, the reduction in surface concentration causes kinetic adsorption from the front
sublayer onto the front of the bubble. The front sublayer concentration decreases,
creating a diffusive flux from the bulk to the front end. Eventually a steady state
develops: the surface concentration at the back end has increased by �Γ above
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the equilibrium value, Γo, corresponding to C0 (as given by the adsorption isotherm
Γo(C0)) so that the desorption rate balances the convective rate. The back sublayer
concentration has increased by �C above C0 so that the diffusive flux away from
the particle surface balances the kinetic desorption. At the front end, the surface
concentration has decreased below Γo so that kinetic adsorption balances convection,
and the sublayer concentration is reduced below C0 sufficiently that diffusion to the
surface balances adsorption. Thus, while the average concentration on the surface at
steady state scales with Γo(C0), the surface concentration is considerably higher at
the rear than at the front of the particle, and the interfacial tension (γ ) is lower at
the back than at the front creating the Marangoni force which retards the surface
velocity.

We use Langmuir kinetics to scale the kinetic exchange of surfactant between
the surface and the sublayer of liquid adjacent to the surface. The kinetic flux of
surfactant, j , is given by

j = βCs(Γ∞ − Γ ) − αΓ, (1.1)

where Γ∞ is the maximum packing density, α and β are kinetic coefficients for
desorption and adsorption, and Cs is the concentration of surfactant adjacent to the
interface (i.e. the sublayer concentration). (The Frumkin kinetic scheme, in which
rates are proportional to the surface coverage through Arrhenius activation energy
terms, have been shown to be more realistic (Chang & Franses 1995), and will be used
subsequently in our analysis; however for scaling arguments the Langmuir scheme
proves sufficient. For a complete description of kinetic schemes see Borwankar &
Wasan 1983.) The average concentration of surfactant on the surface at steady
state scales with the equilibrium concentration Γo. An expression for the equilibrium
concentration is obtained by setting j =0 and noting that the sublayer concentration
is the bulk concentration C0; thus, Γo =Γ∞[k/(1 + k)] where k = βC0/α is the non-
dimensional bulk concentration. Thus a scale for the maximum kinetic rate of
adsorption is βΓ∞Co or equivalently for desorption (βCo + α)Γo. The equilibrium
reduction in surface tension for the Langmuir adsorption isotherm is given by
γc − γo = RT Γ∞ln(1 + k) = − RT Γ∞ln(1 − Γo/Γ∞) (where γc and γo are the surface
tension of the clean interface and the interface with an equilibrium surfactant layer
and RT is the thermal energy). Thus α/β is the surface activity of the surfactant.
The smaller this ratio, the more surface active the surfactant is in the sense that
lower concentrations give greater reductions in tension. The ratio α/β and the
maximum packing concentration are determined from equilibrium measurements
of the tension as a function of the bulk concentration; typical values for fairly
aqueous soluble surfactants at the air/water interface range from 102 mol m−3 for the
least surface-active alcohols like hexanol to 10−6 molm−3 for the very surface-active
non-ionic surfactants. Typical values for the maximum packing concentration are 2–
6 × 10−6 mol m−2 (Chang & Franses 1995). The above description of kinetic exchange
is valid for bulk concentrations up to the critical micelle concentration (CMC) (or
point of immiscibility of the surfactant). At this concentration, the surface becomes
saturated with surfactant and additional surfactant aggregates into micelles in the
bulk or forms a separate immiscible phase. In aqueous media, the more surface active
the surfactant, the lower the CMC, and thus the maximum value of k is approximately
the same and is of order 102–103. Values for the kinetic rate constants are obtained
from measurements of the relaxation in surface tension as surfactant adsorbs onto
a clean interface; the kinetic constants are not as well established as the equilibrium
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ratio, but values reported for α are in the range of 10−4–102 s−1 and values of β

follow from the equilibrium ratio (Chang & Franses 1995).
To scale the diffusional transport of surfactant between the bulk and the sublayer,

we note that typically convection has a large scale than diffusion in liquids. As
an example of a typical system, we can use air bubbles in water and assume a
size range for the radii (a) of between 0.1 and 1 mm. Buoyant velocities (U ) would
then be of the order of 1–40 cm s−1 (Clift et al. 1978). Diffusion coefficients (D) of
surfactants are of the order of 10−10 m2 s−1 (Chang & Franses 1995), and thus the
Péclet number Pe (the ratio of convective to diffusive transport) defined as Ua/D

varies from 104 to 106. At these high values of Pe, the diffusion process occurs in a
boundary layer close to the surface of the bubble, whose thickness δ, scales as aPe−1/2

for a fluid/fluid interface (Acrivos & Goddard 1965). So, δ forms the length scale for
the diffusive transport of the surfactant in the bulk liquid. Hence, the scale for the
diffusive flux is D�C/(aPe−1/2), where �C is the characteristic difference between the
sublayer and bulk concentration. The maximum diffusive flux to the surface is then
(DC0)/(aPe−1/2). The scale for the convective flux is formulated as (ΓoUa)/a2. Finally
the scale for the surface diffusive flux is Ds�Γ/a2 where Ds is the surface diffusion
coefficient. So the ratio of diffusive to convective flux on the surface is ((�Γ )/Γo)/Pes

where Pes = Ua/Ds is the surface Péclet number. As Pes is typically large (assuming
comparable values for bulk and surface diffusion coefficients), surface diffusion is
usually negligible (except in singular cases where large gradients in concentration
develop). With the above scales for bulk and surface diffusion, kinetic exchange
and surface convection as a reference, three regimes of surfactant transport may be
identified as follows:

The stagnant cap regime
In this regime the maximum rate of either the diffusive or kinetic fluxes of surfactant

to the surface is much smaller than surface convection. As a result, to leading order,
adsorbed surfactant behaves as if it were insoluble, and is swept to the back end of the
particle. Using the scales mentioned above, the ratio of the maximum diffusive flux to
the surface to the rate of surface convection can be written as χ(1 + k)/Pe1/2, where
χ =αa/(βΓ∞). The ratio of the maximum rate of kinetic adsorption to the rate of
surface convection can be written as Bi(1 + k) where Bi denotes the Biot number and
is the desorption rate coefficient divided by the convective rate, Bi = αa/U . Thus in
the stagnant cap regime we require χ(1 + k)/Pe1/2 � 1 or Bi(1 + k) � 1. If in addition
the surface Péclet number is large, then surfactant is swept to a stagnant cap with
zero interfacial velocity at the back end since the adsorbed molecules cannot diffuse
back to the front. At the front end the surface is clean of surfactant and stress free,
as shown in the schematic of figure 1. The size of the stagnant cap is characterized
by a cap angle φ, measured from the rear stagnation pole.

The stagnant cap regime has been studied by several authors for the case in
which inertia is negligible, and the fluid particle is assumed to be a sphere. Savic
(1953), Griffith (1962), Harper (1973) (for small cap angles), Davis & Acrivos (1966),
Holbrook & Levan (1983b), Sadhal & Johnson (1982), and He, Maldarelli & Dagan
(1991) all solved the creeping flow equations to obtain the drag as a function of the
cap angle for the buoyancy-driven motion of spheres. Kim & Subramanian (1989)
studied the analogous problem of stagnant caps formed in the thermocapillary-driven
motion of spheres. Bel Fdhila & Duineveld (1996), McLaughlin (1996), and Zhang
et al. (2001) extended these studies to buoyancy-driven bubble flows in water in
which the fluid inertia is not negligible (order-one Reynolds number (Re), where



6 R. Palaparthi, D. T. Papageorgiou and C. Maldarelli

φ

z

bubble

Continuous
liquid phase

Tangentially
immobile

θ

Stress
free

U

Interfacial
convection

Stagnant cap

Surfactant

Figure 1. Stagnant cap model for the surfactant distribution on the surface of
a translating bubble.

Re= Uaρ/µ, ρ and µ being respectively the density and Newtonian viscosity of the
continuous phase) and demonstrated the formation of a wake at the trailing edge due
to the stagnant cap.

The calculation of the drag coefficient as a function of the cap angle is a fluid
mechanical problem and the cap angle itself is treated as a variable in the calculation.
The value of the cap angle is determined by the solution of the surfactant transport
and is a function of the bulk concentration of surfactant or k. This relationship (φ(k))
is obtained by solving the surfactant transport equations and requiring that the net flux
of surfactant to the surface equals zero at steady state (Harper 1973; He et al. 1991).
The relationship (φ(k)) together with the drag as a function of the cap angle provides a
complete description of the immobilization, and in particular answers the question of
how much surfactant has to be dissolved in the system to immobilize the surface com-
pletely. For kinetic control (He et al. 1991; McLaughlin 1996; Bel Fdhila & Duineveld
1996) studies have shown that the cap angle increases quickly with bulk concentration
k from a clean to a fully covered and completely tangentially immobile surface.

More complete studies taking into account finite rates of both kinetic exchange and
diffusive transport of the surfactant have been undertaken by Cuenot, Magnaudet &
Spennato (1997), Liao & McLaughlin (2000a), Liao et al. (2004) and Takemura (2005).
These studies solved the convection diffusion equation along with the hydrodynamic
equations for order-one Re without the a priori assumption of a stagnant cap, but
for conditions in which a cap would be formed by both kinetic and bulk diffusive
restrictions. They demonstrated that the surfactant does organize itself into a stagnant
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cap at the trailing end of the bubble. The cap angle and terminal velocity (or
alternatively drag) were calculated for values of k corresponding to intermediate cap
angles, although no systematic study of the functional dependence was undertaken.
Analytical expressions for mixed control in the stagnant cap regime using a boundary
layer analysis have been obtained by Harper (2004) and the stagnant cap regime has
also been studied in the context of its effect on the dissolution of translating bubbles
composed of gases soluble in the continuous phase (see, among others, Takemura &
Yabe 1999; Ponoth & McLaughlin 2000; Liao & McLaughlin 2000b).

Uniformly retarded regime
When the rates of bulk diffusion and surfactant kinetic exchange are of the same

order as the interfacial convection, surfactant exchanges between the bulk and the
surface. Within the framework of the scales developed above, the uniformly retarded
regime is realized when Bi(1 + k) = O(1) and χ(1 + k)/Pe1/2 = O(1). In this case, the
surface of the bubble becomes more uniformly retarded rather than, as the case with
the stagnant cap, completely mobile at the front end and solid-like at the back. In
particular, the balancing of the diffusive rate with the convective rate provides a scale
for the difference between the bulk and sublayer concentrations �C:

a2D�C

aPe−1/2
= O(ΓoUa)

or
�C

C0

= O

(
Pe1/2

χ(1 + k)

)
.

The balancing of the kinetic rate to the convective rate provides a scale for �Γ :

Bi(1 + k)

(
�C

(1 + k)C0

− �Γ

Γo

)
= O(1).

In the creeping flow limit, this case has been studied by several authors at low
surfactant concentrations (k < 1) for both kinetic and diffusion-limited transport
(Deryagin, Dukhin & Lisichenko 1959, 1960; Levich 1962; Dukhin & Buikov 1965;
Harper 1972; 1974; Levan & Newman 1976; Harper 1982; Holbrook & Levan 1983a;
Saville 1973; Andrews, Fike & Wong 1988; Harper 1988; Leppinen, Renksizbulut &
Haywood (1996a, b) and order-one values of k for kinetically limited transport
(Chen & Stebe 1996, 1997; Ybert & Meglio 2000).

Remobilization regime
In the limit in which the bulk concentration is large k � 1 and the kinetic

and bulk diffusive exchange are fast relative to convection (χ(1 + k)/Pe1/2 � 1 and
Bi(1 + k) � 1) the difference between the bulk and sublayer concentrations becomes
small relative to C0,

�C

C0

=
Pe1/2

χ(1 + k)
� 1.

Since the kinetic rate is much faster than the convective rate, the surface and
sublayer are in equilibrium so that the variation in the surface concentration from
the equilibrium �Γ is small and can be related to the small variation in �C:

�Γ

Γ∞
=

kPe1/2

χ(1 + k)3
.

This latter quantity tends to zero (as k becomes large) indicating that the surface
concentration becomes uniform, and the Marangoni force disappears. This regime
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has been investigated for the case of diffusion-limited transport of the surfactant (i.e.
Bi → ∞, and χ(1 + k)/Pe1/2 = O(1)), by Wang, Papageorgiou & Maldarelli (1999) for
small Re, and for order-one Re by Wang, Papageorgiou & Maldarelli (2001) and
Takemura (2005).

For the typical system we have considered of air bubbles 0.1–1 mm in radius
rising in water with velocities 1–40 cm s−1, it is easy to see that the regime which
is most commonly realized is the stagnant cap regime. The surface Péclet number,
as we mentioned above, is typically very large for these conditions. The parameter
χ/a =α(Γ∞β), which is only a function of the surfactant chemistry, is strongly
dependent on the surfactant activity. From the values discussed above, this parameter
ranges between 1m−1 (for the most surface-active surfactants) and 108 m−1 for the
least surface-active surfactants (see Chang & Franses 1995). The parameter χ is
therefore between 105 (for the largest radii and-least surface-active surfactants) and
10−4 (for the smaller radii and most surface-active surfactants). Thus at low or
trace concentrations of a very surface-active surfactant, i.e. k � 1, or even k = O(1),
χ(1 + k)/Pe1/2 � 1 and bulk diffusion limitations alone can result in the stagnant cap
limit (recall that Pe varies between 104 and 106). These arguments show in particular
why very surface-active materials in trace amounts (k � 1) lead to the stagnant
cap regime, and uniform retardation and remobilization are only realized at higher
concentrations (k � 1) of less surface-active surfactants. (As we mentioned above,
values for k can range up to 103 before the critical micelle concentration is reached.)
With regard to kinetic limitations, kinetic rate constants are not well established.
Values for α are in the range of 10−4–102 s−1, depending on the surfactant (Chang &
Franses 1995). Thus, kinetic limitations can also give rise to the insoluble limit since
Bi ranges from 10−6 to 1.

While the stagnant regime is the usual one realized in the typical case of fluid
particles buoyantly moving in an aqueous system containing a surface-active impurity,
and, furthermore, has been the regime most extensively studied theoretically, few
comparisons have been made between measurements of terminal velocities in the
stagnant cap regime and theoretical computations. The early experimental evidence
on the reduction in circulation inside drops by Savic (1953) and Horton et al.
(1965) among others also showed the shift in the centre of the circulation vortex to
the leading edge, reflecting that a stagnant cap had formed on the surface of the
drop. Aside from these qualitative observations, the first attempt at a quantitative
comparison between stagnant cap theory and experiment was Griffith’s (1962) study
of the motion of droplets with surfactant added to the system. Griffith interpreted his
results in terms of the stagnant cap model, but the calculation of the cap angle as a
function of the bulk concentration by solution of the surfactant transport equations
was not undertaken. Bel Fdhila & Duineveld (1996) performed experiments measuring
the reduction in the terminal rise velocity of air bubbles in water as a function of
increasing bulk concentration of a dissolved non-ionic surfactant, Triton X-100.
These authors verified from the scaling arguments that the bubbles were moving
in the stagnant cap regime, and compared the experimental results to stagnant cap
theoretical calculations which solved the surfactant transport equations but assumed
(as we mentioned above) only a kinetic limitation to the surfactant transfer. The
simulations showed qualitative agreement with the experiments, in part due to the
fact that the effects of bulk diffusion were not included. The discrepancy may also
be attributed to the fact that the velocities may not have achieved their terminal
values, as pointed out by Zhang & Finch (2001) (see also Zhang et al. 2001). These
authors performed their own experiments for air bubbles in Triton X-100 solutions
carefully ensuring that a terminal velocity had been reached. They demonstrated
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that the terminal velocity for the concentration range they used was independent of
concentration, and close to the value expected for a rigid particle. The decrease in
terminal velocity with bulk concentration as predicted by theory was not observed,
perhaps because the concentrations in the range used were already too large and the
rigid interface had already been achieved.

The objective of this paper is to obtain a quantitative agreement between
experiments and theory for surfactant-laden spherical bubbles rising in liquids in
the stagnant cap regime. Our first objective is to present complete solutions for
the stagnant cap angle and drag as a function of bulk concentration of surfactant
including both kinetic and bulk diffusion limitations. We will also compare the results
of Langmuir adsorption, which is the only model which has been used in stagnant
cap modelling, and the more realistic Frumkin adsorption which includes molecular
interactions in the adsorbed monolayer. Our second objective is to undertake exper-
iments measuring the terminal velocity of bubbles at increasing bulk concentrations
of a surfactant, to demonstrate a reduction in the velocity with concentration from
the clean-interface value to that for a rigid particle, and to compare simulations
using measured surfactant parameters to the velocity measurements. The experiments
are undertaken in a glycerol–water continuous phase with a viscosity approximately
thirty times that of water and with bubbles of approximately 0.3–0.8 mm in radius.
Under these conditions the velocity of bubbles of this size is reduced sufficiently
compared to that of water that the bubbles translate rectilinearly and inertia does
not distort the bubbles from spherical shapes. Reynolds numbers are still of order
one. We use a polyethylene oxide surfactant C12E6(CH3(CH2)11(OCH2CH2)6OH) for
the surface-active agent, and its equilibrium and kinetic parameters and diffusion
coefficient are measured separately by dynamic tension measurements.

An outline of this paper is as follows. In § 2 we formulate the mathematical model;
our numerical algorithms for solving the governing equations for the stagnant cap
hydrodynamics and surfactant transport, accounting for finite rates of transport of
the surfactant by diffusion-in the bulk and kinetic exchange at the interface, are
detailed in the Appendix. In § 3 we present and discuss the results of our simulations.
In § 4 we describe our experiments on measuring the drag coefficient on a gas bubble
rising in a glycerol–water mixture containing (C12E6), and compare the simulations
with the experiments. Section 5 contains concluding remarks.

2. The mathematical model
Consider a spherical bubble of radius a, moving steadily and axisymmetrically (in

the negative z-direction) with velocity U due to buoyancy in a continuous phase
containing surfactant. We undertake the analysis in a spherical coordinate system
fixed to the bubble with the centre of the spherical system at the bubble centre and
the spherical angle θ taken from the negative z-direction as shown in figure 2. In this
moving reference system, the bubble interface is fixed, and the flow far from the bubble
is in the positive z-direction. The viscosity and density of the continuous phase are
denoted by µ and ρ respectively, and γc is the value of the surface tension for a clean
interface. The continuous phase contains surfactant with a bulk concentration (far
from the bubble surface) equal to C0. The assumption of the bubble being spherical
is valid if both the inertial and viscous forces are small compared to surface tension
forces (i.e. the Weber number, We= ρU 2a/γc, and the capillary number, Ca = µU/γc,
are small). The flow around the bubble is described by the incompressible Navier–
Stokes equations coupled to a surfactant transport equation. In non-dimensional form
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r = 1

r = r∞

Figure 2. Definition sketch of the computational domain which is restricted from the bubble
surface r = 1 to infinity r = r∞. A value of 80 bubble radii is chosen for r∞. The outer boundary
is divided into inflow and outflow regions at θ = π/2.

these equations are

Re[vt + v · ∇v] = −∇P + ∇2v, (2.1)

∇ · v = 0, (2.2)

Ct + v · ∇C =
1

Pe
∇2C. (2.3)

In arriving at (2.1)–(2.3), lengths, velocities, surfactant concentration C, and pressure
P are non-dimensionalized with the bubble radius a, the free-stream velocity U , bulk
concentration C0, and µU/a, respectively; in what follows u and v denote radial and
azimuthal components of the velocity vector v; the Reynolds and Péclet numbers
are given by Re = Uaρ/µ and Pe= Ua/D, respectively, with D being the diffusion
coefficient of the surfactant in the liquid. Although we are interested in steady-state
solutions, we-formulate and work with the unsteady problem for numerical purposes
(see below).

At the surface of the spherical bubble, the radial component of velocity is equal to
zero. The presence of surfactant creates a surface tension gradient and causes a force
on the bubble surface that must be compensated by a viscous tangential stress on the
interface. In dimensionless form this is

∂γ

∂θ
=

∂γ

∂Γ

∂Γ

∂θ
= −Caτrθ on r = 1, (2.4)

where τrθ is the dimensionless shear stress, Γ is the dimensionless surface
concentration non-dimensionalized by the maximum packing concentration Γ∞, and
γ is the dimensionless surface tension non-dimensionalized by the clean value γc.
To model the surfactant adsorption, Frumkin kinetics will be used since this scheme
describes accurately the kinetics of a wide range of surfactants. The equation of state
for this kinetic scheme is given by (see Chang & Franses 1995)

γ = 1 + MaCa

[
ln(1 − Γ ) − K

2
Γ 2

]
, (2.5)

from which the boundary condition (2.4) on the surface of the bubble becomes

[τrθ ]r=1 =

[
r

∂

∂r

(v

r

)]
r=1

= Ma

[
1

1 − Γ
+ KΓ

]
∂Γ

∂θ
, (2.6)

where Ma = RT Γ∞/µU is the Marangoni number, R is the gas constant, T is the
temperature, and K is a parameter accounting for intermolecular interactions among
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the molecules of the adsorbed layer at increasing surface concentration (K = 0 gives
the Langmuir type kinetics; K larger than 0 are repulsive interactions and K less
than zero are attractive interactions). The Marangoni number is a measure of the
forces due to surface tension gradients relative to the viscous forces.

The surfactant distribution on the bubble is computed from a surface mass balance.
Surfactant transport into the air interior of the bubble is neglected. Under these condi-
tions, the balance equation for the interfacial concentration, and with kinetics descri-
bed by the Frumkin scheme, can be written as (see Edwards, Brenner & Wasan 1991)

Γt +
1

sin θ

∂

∂θ
(sin θΓ vs) =

1

Pes

1

sin θ

∂

∂θ
(sin θΓθ ) + Bi(kC|r=1(1 − Γ ) − eKΓ Γ ), (2.7)

Bi(kC|r=1(1 − Γ ) − eKΓ Γ ) =
χk

Pe
Cr |r=1. (2.8)

Here Γ is the non-dimensional surface concentration, vs is the azimuthal component
of the velocity v on the surface of the bubble, k = βC0/α is a measure of bulk
concentration (α and β are the (Frumkin) desorption and adsorption rate constants
respectively), and Bi =αa/U , the Biot number, is the ratio of the rate of kinetic
desorptive exchange of the surfactant at the gas/liquid interface to the rate at which
it is convected from the front end to the rear end due to the bulk flow. At infinity the
boundary conditions for the flow and concentration match their free-stream values:

v = uer + veθ i.e. u = − cos θ, v = sin θ as r → ∞, (2.9)

C(r, θ) → 1 as r → ∞. (2.10)

Finally, we note that the drag coeffcient on the bubble is given by

CD =

∫ π

0

(−P cos θ + τrr cos θ − τrθ sin θ)r=1 sin θ dθ, (2.11)

where τrr =2∂u/∂r . Here the drag is non-dimensionalized by the viscous force 2πµUa.
Using these scalings, the values of CD in the creeping flow limit are 2 for flow past a
spherical bubble and 3 for flow past a solid sphere.

As explained in the Introduction, in the limits in which Pes � 1 and either the
kinetic or diffusive rates of surfactant adsorption are much smaller than surface
convection, a stagnant cap is formed at the trailing pole of the bubble. The scaling
arguments which define these regimes are discussed in the Introduction for the case of
Langmuir adsorption. For Frumkin adsorption, the equilibrium surface concentration
used in the scaling is given by Γo/Γ∞ = k/(k+eKΓo/Γ∞) and the defining criterion for the
stagnant cap regime becomes with these kinetics: Bi(eKΓ0/Γ∞ + k) � 1 or χ(eKΓ0/Γ∞ +
k)/Pe1/2 � 1.

In the stagnant cap limit, in the balance equation (2.7) for Γ , the advective term
vanishes when steady-state conditions are reached, see Savic (1953). Then (2.7) in
conjunction with (2.8) reduces to

1

sin θ

∂

∂θ
(Γ vs sin θ) = 0. (2.12)

Applying the boundary conditions of zero fluxes at the stagnation points then leads
to

Γ vs = 0. (2.13)

This shows that the interface contains essentially two different regions. Between the
front stagnation point and the beginning of the cap, the interface is free of surfactant.
Thus according to the equation (2.4), this part is subjected to a stress-free boundary
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condition, that is,

0 < θ < π − φ

{
v(r = 1, θ) �= 0,

τrθ (r = 1, θ) = 0,

Γ (θ) = 0,

(2.14)

In this stress-free region equation (2.8) becomes

BiC|r=1 =
χ

Pe
Cr |r=1. (2.15)

On the stagnant cap at the back end of the bubble, the condition (2.13) predicts a
zero surface velocity, namely,

π − φ < θ < π

{
v(r = 1, θ) = 0,

τrθ (r = 1, θ) = τs(θ; φ) �= 0,

Γ (θ) �= 0,

(2.16)

The non-zero surface concentration at the back end is obtained by integration of the
Marangoni stress condition (2.6) to give

1

2
KΓ (θ)2 − ln(1 − Γ (θ)) =

1

Ma

∫ θ

π−φ

[
∂v

∂r
− v

]
r=1

dθ. (2.17)

The matching of the diffusive flux to the kinetic exchange, see (2.8), provides the
boundary condition for the concentration in this region with Γ (θ) given above, that
is

χ

BiPe

∂C

∂r
(1, θ) = C(1, θ)[1 − Γ (θ)] − 1

k
Γ (θ) exp(KΓ (θ)), π − φ < θ < π. (2.18)

Given a cap angle φ, then the above velocity and concentration boundary conditions
should be used to solve the Navier–Stokes equations and the convection–diffusion
equation for C, to determine solutions. Note that with φ arbitrarily prescribed, these
stagnant cap equations are well-posed and a steady solution follows. The integral
of the steady version of (2.7) along with (2.8) establishes that the net transport of
surfactant onto the surface, which defines a non-dimensional Nusselt number Nu, is
equal to zero, that is,

Nu =

∫ π

0

[
∂C

∂r

]
r=1

sin θ dθ = 0. (2.19)

Note that this constraint is independent of the values of Bi and Pe and is therefore
valid even in the stagnant cap limit where Bi is small and Pe is large. In the stagnant
cap regime, this final condition (2.19) determines the cap angle and hence the flow
and concentration fields.

3. Numerical results
The Appendix describes the numerical solution procedures for solving the stagnant

cap hydrodynamic and surfactant mass transfer equations which were detailed in
the previous section. Here we present numerical results, focusing particularly on
the dependence of the cap angle and drag coefficient as a function of the bulk
concentration of surfactant. The values of the non-dimensional groups used in the
simulations correspond to the conditions of the experiments where air bubbles rise in
glycerol/water solutions of the polyethoxylate surfactant C12E6. For this surfactant,
as we discuss in the Experimental Section (§ 4), equilibrium and dynamic tension
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CMC, mol m−3 0.209
Γ∞, mol m−2 4.48 × 10−6

K 5.47
D, m2 s−1 1.5 × 10−11

α/β , mol m−3 9 × 10−4

β , m3 mol−1 s−1 >10
α, s−1 >9 × 10−3

Re 0.91
Ma 12.6
Pe 1.2 × 106

χ 0.12
Bimin 1.55 × 10−4

Table 1. Properties of C12E6 in 70:30 glycerol–water mixture and characteristic values of
non-dimensional groups.
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Figure 3. Surfactant surface concentration as a function of angle for different bulk
concentrations k for a diffusion-limited case and Langmuir adsorption for parameter values
as given in table 1.

experiments (for adsorption onto an initially clean interface) were undertaken to
obtain the critical micelle concentration, the Frumkin adsorption parameters K , α,
β , and Γ∞ and the diffusion coefficient D. These are summarized in table 1, where
we note that only a lower bound could be established for the kinetic rate constants
due to the fact that the high viscosity of the solution reduces the diffusion coefficient
and makes the diffusion process rate limiting. Using these parameters, and from the
experimental measurements characteristic values for the viscosity and density of the
glycerol/water mixture, the rise velocity U and the bubble radius a, we compute
representative values of Re, Ma, Pe, χ , and a lower bound for the Biot number Bimin.
These, as detailed in table 1, are used in the simulations.

3.1. Diffusion-limited transport and Langmuir adsorption

Consider first the case of diffusion-limited transport (Bi → ∞) when the surfactant
follows Langmuir type kinetics (i.e. when K = 0 in equation (2.5)); the values of
Re, Ma, Pe and χ are those given in table 1. In figure 3 we plot the surfactant
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Figure 4. Surface velocity as a function of angle for different bulk concentrations k for a
diffusion-limited case and Langmuir adsorption for parameter values as given in table 1. At
the highest concentration, the interface is completely immobile.
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Figure 5. Variation of the non-dimensional sublayer concentration profile Cs for
both-diffusion limited and finite-kinetic-exchange cases for Langmuir adsorption, for the
same stagnant cap size, φ =106.2◦, k = 2.3 × 10−2 for diffusion-limited and k = 4.9 × 10−2 for
the kinetic-limited curve and other relevant parameter values are as given in table 1.

surface concentration profiles for a series of cap angles and corresponding bulk
concentrations k, and figure 4 shows the corresponding surface velocity profiles. For
the parameters used in this simulation, k < 1 and χ(k + 1)/Pe1/2 � 1.271 × 10−4 � 1,
and hence we are in the stagnant cap regime. To get a physical picture of the mass
transfer mechanism we plot in figure 5 the sublayer concentration for a typical value
of k, k = 2.3 × 10−2. It can be seen from figure 5 that at the front end of the bubble
the sublayer concentration, CS(Front)/C0 say, is zero while that at the back, CS(Back)/C0

say, is in equilibrium with the surface concentration distribution. Here CS(Front) and
CS(Back) denote the dimensional concentrations. Thus at the front end, surfactant
diffuses towards the surface where the sublayer concentration is zero, and at the
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back end surfactant diffuses away from the surface since the sublayer concentration
becomes larger than the value at infinity (i.e. 1 in dimensionless terms). Note that
the value of CS(Back)/C0 becomes of order 101. This relatively large value can be
understood by considering the fact that at large Pe the dimensionless mass transfer
at the front end balances that off the back end, at the following scales:

DC0

a
Pe1/2Φ ∼ DC0

a
(Cs − 1)Pe1/3(1 − Φ), (3.1)

where Φ is the area of the clean part of the bubble divided by the total area. Note
that at the back, and since the interface is immobile, the mass transfer scales, at large
Pe, with Pe1/3, whereas (see the Introduction) on the interfacially mobile front end the
scale is Pe1/2. When Φ =O(1), as is the case in figure 5, then (Cs −1) must be of order
Pe1/6, i.e. large, so that the diffusional fluxes balance. This accounts for the O(10) value
of Cs observed in the figure. For the diffusion-limited case the sublayer concentration
is directly related to the surface concentration. The Γ distribution, determined by
integrating the shear stress, is 0.20 or less since the Marangoni number is order 10 in
this run. In general, as can be seen from equation (2.17), we have Γ ∼ Ma−1, and for
k � 1, from the adsorption isotherm Γ ∼ kCs and Cs � 1 and hence

DC0

a
Pe1/2Φ ∼ DC0

a

1

kMa
Pe1/3(1 − Φ) (Ma � 1). (3.2)

This explains why small values of k can give rise to large stagnant caps when Ma is
large.

As the surfactant bulk concentration is increased, figure 3 and figure 4 show that
the stagnant cap increases. A physical explanation of this is as follows. At any given
cap angle φ, the dimensional flux of surfactant from the bulk to the front end of the
bubble scales as DC0Pe1/2/a (since the surface concentration is zero and by quasi-
equilibrium so is the sublayer concentration), while at the back,end the flux off the
bubble surface into the bulk scales as D(CS(Back) − C0)Pe1/3/a. Consider an increase
in bulk concentration k or C0 with the cap angle fixed. The flux at the front end onto
the bubble surface increases; since the cap angle does not change, the Γ distribution
and, owing to the diffusion-controlled limitation, the sublayer concentration CS(Back),
do not change. Thus, the flux off the back end decreases with an increase in k or C0.
In order for these fluxes to balance for steady-state conditions, the cap angle must
increase. From figure 3 and figure 4, we observe that small changes in k can lead
to very large changes in cap angle; this is due to the fact that at such high Péclet
numbers, the scaling of the flux onto the front end is asymptotically larger than that
off the back. In the limit in which the stagnant cap angle tends to π, equation (3.2)
indicates that the size of the clean sector scales as Φ ∼ 1/(Pe1/6Mak). For the values
of physical parameters given in table 1, complete coverage occurs at a value of k

approximately equal to 0.3.
From the dependence of cap angle on bulk concentration, we can obtain the

corresponding dependence of the drag coefficient. These results are given in figure 6
which presents the scaled drag coefficient C∗

D defined as

C∗
D = 100

[
CD − CD(Bubble)

][
CD(Solid) − CD(Bubble)

] , (3.3)

as a function of k for Re = 0, 0.91 and 100. In the above CD(Bubble) and CD(Solid) denote
the drag coefficients for a clean (stress free) bubble and solid at a particular Re. In
the diffusion-limited case (Bi → ∞), we observe that as more surfactant is added to
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Figure 6. Numerical simulations showing the effect of the surfactant bulk concentration on
the scaled drag coefficient of a rising bubble in the stagnant cap regime. Shown for cases
when the surfactant follows a Langmuir type kinetics (K = 0) at (a) Re =0, (b) Re= 0.91 and
(c) Re= 100. Other relevant parameter values are as given in table 1.
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Figure 7. The variation of the scaled drag coefficient on a rising spherical bubble with the
surfactant bulk concentration. Effect of flow Reynolds number. Shown for cases when the
surfactant follows Langmuir type kinetics (K = 0) and when its transport is diffusion limited.
Other relevant parameter values are as given in table 1.

the bulk and the size of the stagnant cap increases, drag on the bubble increases from
that of a stress-free value to that of a completely stagnant interface having a solid-like
value. Figure 6 also shows the drag coefficient as a function of the bulk concentration,
for the case of finite kinetic Langmuir exchange rates with Bi= 1.5 × 10−4, and the
three Reynolds numbers shown in the figure. These will be discussed further on.

Next we consider the effect of the Reynolds number on the stagnant cap size and
drag for the diffusion-limited case of Langmuir adsorption. In figure 7, we plot the
scaled drag as a function of k for three different Reynolds numbers, Re = 0, 0.91, 100.
We note that as the Reynolds number increases, the curves shift to the right. This
can be rationalized as follows. For a given cap angle, the shear stress τrθ (θ) acting
over the stagnant cap region increases with Reynolds number, implying an increase
in the surface surfactant concentration Γ (θ) necessary to balance the increased
shear stress (see equation (2.17)). A higher surfactant surface concentration can
only be achieved, then, by a higher surfactant bulk concentration C0. Hence to
achieve the same cap angle, a higher surfactant bulk concentration C0 or k is
required.

We note that in the stagnant cap boundary conditions that follow from (2.13), the
discontinuity in shear stress at the position θ = π−φ where the cap begins, is a square
root singularity (see for example Harper 1973), that is τrθ ∼ |θ − (π − φ)|−1/2. Hence,
it follows from equation (2.17) that Γ (θ) ∼

∫
τrθ dθ ∼ |θ − (π − φ)|1/2, in the limit

close to the discontinuity, θ → (π − φ). The same is true for the surface velocity vs(θ)
in the stress-free region, that is vs(θ) ∼ [π − θ − φ]1/2. These results are confirmed
by our numerical simulations as shown in figure 8. In figure 8 we plot the surface
concentration Γ and surface velocity vs close to the stagnant cap discontinuity against
the square root of the distance from the discontinuity. The linear behaviour evident
in the figures for a range of cap angles chosen from the simulations confirms the
above facts and acts as additional validation for the code’s accuracy.
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Figure 8. Surfactant surface concentrations (a) and interfacial velocities (b) close to the point
of stagnant cap discontinuity (at Re= 0.91 for a diffusion-limited case). This indicates the
square root singularity in the shear stress at the position of the stagnant cap. Other relevant
parameter values are as given in table 1.

3.2. Diffusion coupled with finite Langmuir or Frumkin kinetics

Figure 6 compares the drag for the diffusion-limited case and a finite value of
Bi= 1.55 × 10−4 (this value is selected to correspond to the minimum value of Bi
in the experiments reported in § 4), for three values of Re = 0, 0.91, 100. We see
from these results that the effect of finite kinetics is to reduce the drag, i.e. decrease
the cap angle, at a given bulk concentration. Alternatively, to achieve a given cap
size a higher bulk concentration is needed than in the diffusion-limited case. This
can be explained as follows. Consider the diffusion-limited case with a given cap
size φ corresponding to k = 2.3 × 10−2 as shown in figure 3. With the introduction
of finite kinetics, the sublayer concentration profile changes, for the same surface
concentration distribution, as shown in figure 5 in accordance with equation (2.8).
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Figure 9. Numerical simulations showing the effect of the surfactant bulk concentration on
the scaled drag coefficient of a rising bubble in the stagnant cap regime. Shown for cases when
the surfactant follow Langmuir type kinetics (K =0) and when it follow Frumkin type kinetics
(K non-zero, here K = 5.47) at Re= 0.91. Other relevant parameter values are as given in
table 1.

While at the front end CS(Front)/C0 increases and becomes non-zero in contrast to the
diffusion-limited case, at the back end, CS(Back)/C0 decreases from its diffusion-limited
value. These changes in the sublayer concentration reduce the bulk diffusive flux to
the surface at the front end of the bubble, which scales as Pe1/2, and from the back
end of the bubble into the bulk, which is of order Pe1/3. However, since the flux at
the front scales higher with Pe than at the back, changes in sublayer concentration
have a greater effect on the flux at the front end, and hence the net surfactant flux
onto the bubble surface is reduced. To maintain the mass balance of the surfactant
at both the front and back end (we are in a steady-state configuration), we need to
increase the surfactant flux onto the bubble surface at the front by increasing the
bulk concentration C0 or non-dimensionally k.

Figure 9 presents results when the surfactant follows Frumkin-type kinetics (here
K = 5.47 which characterizes the interaction parameter for the C12E6 surfactant
used in the experiments and a positive value of K is typical for most surfactants
(Chang & Franses 1995)). Again values of k < 1 satisfy the stagnant cap restriction
χ(k + expK(Γo/Γ∞))/Pe1/2 � 1. Trends similar to those for the Langmuir case are
found. Notably, at any given surfactant bulk concentration k, a lower drag is achieved
compared to the corresponding Langmuir case. To explain this effect for the case
of diffusion limitation, consider the cap angle and hence the hydrodynamics fixed.
The surface concentration computed from the stress balance changes because of the
intermolecular term (K) in the equation of state (2.17). For repulsive interactions (K
larger than zero), smaller values of the surface concentration are obtained for the
Frumkin case at the same angular position in the cap because surface pressures are
much larger due to the intermolecular contribution. The sublayer concentration in
equilibrium would then nominally be smaller due to the lower surface concentration.
However this effect is offset by the fact that, with repulsive intermolecular interactions,
to achieve the same surface concentration much larger equilibrium bulk concentrations



20 R. Palaparthi, D. T. Papageorgiou and C. Maldarelli

3.0

2.5

2.0

C
ri

ti
ca

l b
ul

k 
co

nc
en

tr
at

io
n,

 k
c

1.5

0.5

1.0

0
1 10 100

Marangoni  number, Ma

Figure 10. Effect of the Marangoni number on the amount of surfactant, kc , needed for the
stagnant cap to completely cover the bubble surface – diffusion-limited case for Re= 0.91,
K = 5.47. Other relevant parameter values are as given in table 1.

are necessary, so the local equilibrium surface concentrations are much greater than
those for the Langmuir case. As a consequence, there is greater desorption off the back
end for the Frumkin case. The front end is unaffected since the surface concentration
is equal to zero. The bulk concentration should then be increased to reduce the
diffusive transport off the back end and allow the Nusselt number to be equal to zero.
Inclusion of a kinetic limitation reduces the drag relative to the diffusion-limited case
for the reasons discussed earlier of the large reduction in the adsorption at the front
end, and this is true for the Frumkin model as well so the Frumkin curves lie below
their diffusion-limited simulations.

In figure 10, we plot the bulk concentration (kc) of surfactant needed to create a
stagnant cap that covers the entire bubble surface (cap angle φ = π), as a function of
the Marangoni number Ma, for the case of a diffusion-limited surfactant transport
following Frumkin exchange kinetics (with the value of K as specified earlier). We
see that as the Marangoni number increases, complete coverage is achieved at lower
surfactant bulk concentrations. Physically, from the definition of the Marangoni
number Ma= RT Γ∞/µU , smaller sized bubbles have higher Marangoni numbers.
It can be concluded, therefore, that smaller bubbles are completely covered and
behave like solid spheres at lower bulk concentrations than larger sized bubbles. This
behaviour is observed in our experiments which are described in § 4 of this study. We
also note that the results of figure 10 explain the findings of Zhang & Finch (2001),
Zhang et al. (2001). These authors measured the terminal velocities of bubbles in an
aqueous Triton X-100 surfactant solution, and found that for the concentration range
they employed (10−3 − 10−5 molm−3) the bubbles rose with a velocity independent
of concentration. We estimate a Marangoni number of approximately 70 for their
experiments (2a = 0.8mm, U = 0.1 m s−1, µ = 10−3 kgm−1 s−1, Γ∞ = 2.91 × 10−6 mol
m−2 (Triton X-100 at the air/water interface)), and using figure 10 provides a
minimum concentration of kc = 0.05 which corresponds to a bulk concentration
of about 3 × 10−5 mol m−3; this value is in turn approximately equal to the minimum
value used in the experiments of Zhang et al. (2001). The reason why their velocities
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were independent of concentration may therefore be that their concentrations are
above the critical value given in figure 10. (Note that this is an estimate because
figure 10 was obtained for a Reynolds number of 0.91 whereas their value is
approximately 40. In addition, their value of Pe is one order of magnitude smaller
and K = 0, whereas χ is approximately the same.)

Above kc, the stagnant cap extends over the entire surface of the bubble. Further
increases in bulk concentration increase the amount adsorbed onto the surface with
the concentration at the front pole increasing from zero. The hydrodynamics will
not be changed as long as the diffusive transport rates (to/from the bulk) and the
kinetic exchange rates (at the interface) of the surfactant do not outweigh the surface
convection rate. When bulk concentrations are large enough that the kinetic or
diffusive rates become of the order of the convective rate, then we enter the uniformly
retarded and remobilization regimes. There are no sharp gradients in shear stress, or
surface concentration, on the bubble surface in these regimes. To find the drag on the
bubble as a function of the surfactant concentration in these regimes, the complete
flow equations (2.1) and (2.2), coupled with the surfactant transport equations in both
the bulk (2.3) and on the surface (2.7), must be solved simultaneously. The coupling
occurs through the shear stress balance on the surface as given by equation (2.6) (see
Wang et al. 1999).

4. Experiments
4.1. Materials and experimental apparatus

We originally intended to measure the velocity of gas bubbles in aqueous surfactant
solutions since the adsorption properties of surfactants at the air/water interface
have been well-studied (Borwankar & Wasan 1983; Chang & Franses 1995) and
comparison with the theory (which requires the adsorption constants) could be made.
However, for air bubbles in the size range we are interested in, i.e. of radii 0.1–1 mm,
steady rise velocities in water, as experimentally measured by several investigators (see
for example Clift et al. 1978), are of the order 10–400 mm s−1. At the higher velocities
in this range, inertial effects are of the order of capillary forces (i.e. We approaches 2)
so the bubbles with the larger radii, as has been observed, are deformed. Our theory
is for spherical shapes; since we want to quantitatively compare the theory to these
experiments, we decided to increase the continuous-phase viscosity (µ) by adding
glycerol to water to reduce U . We chose a glycerol/water ratio of 7:3 by volume,
which has a viscosity of 29 cP (as measured by a Haake Couette viscometer), and
a density of 1.192 g cm−3 (as measured by a Troemner densiometer) at 25 ◦C. As we
will verify (see also Maxworthy et al. 1996), gas bubbles in the range of 0.3–0.8 mm
in radius rise with velocities of the order of 10–60 mm s−1 keeping the Weber number
less than 0.05, so that the bubbles remain spherical.

In preparing the continuous phase, the water is purified from tap water using a
Millipore Q System (Millipore, MA) with a specific resistance greater than 15 M
ohmcm. The glycerol is obtained from Sigma and is used without modification. The
surface tension of the aqueous/glycerol mixture against air was equal to 65.6 dyn
cm−1 as measured by a pendant bubble apparatus. For extended times, the tension
reduced by less than 1 dyn cm−1, indicating that the impurities in the mixture were at
very low concentration. In the range of temperatures studied (24–27 ◦C), the density
of the solution did not vary but the viscosity is a strong function of temperature
and its effect is accounted for in our study. Viscosities were measured at various
temperatures in the range 24–27 ◦C, and these data were then used to obtain a
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Figure 11. Experimental apparatus for the measurement of bubble rise velocities. A,
microscope; B, video camera; C, light source; D, Mac w/Frame grabber. Insets show the
details of the manufacture of the sub-millimetre sized bubbles, and video captures of the
bubble slug in the capillary and the spherical, rising bubble in the chamber.

correlating polynomial for the variation of viscosity with temperature. In computing
the experimental drag coefficients, the polynomial was used to obtain the viscosity at
the temperature of the experiment, and this value was then used in calculating the
coefficient (see below).

For the present study, we chose the non-ionic polyethoxylated surfactant C12E6, with
the following structure (CH3(CH2)11(−OCH2CH2)6−OH) and a molecular weight of
450.7. This was obtained from Nikkol Surfactants, Japan; from gas chromotography,
samples of these surfactants were shown by the manufacturer to be better than 99.9 %
pure.

The experimental apparatus we designed to measure bubble rise velocities is given
schematically in figure 11. The apparatus consists of two parts: a horizontal capillary
tube where the bubbles are created, and a vertical chamber filled with the continuous
liquid phase and connected to the tube, in which the bubbles rise and their velocities
and shapes are measured by video recording. A train of gas bubbles is created in a
horizontal precision bore quartz capillary tube 0.5 mm in bore (Wilmad Glass, NJ) by
injecting nitrogen into a flowing stream of the continuous liquid phase. The stream is
driven by a syringe pump and enters the capillary tube at the T junction. The stream
flow is set up first. Pressurized nitrogen is connected by teflon tubing from a tank to
a stainless steel needle inserted in the capillary tube 1 cm past the T junction. The
outer diameter of the needle (0.45 mm) fits loosely into the capillary bore, allowing
the continuous liquid phase introduced at the T to flow in the annular space between
the needle and the inside surface of the capillary tube. The inner diameter of the
stainless steel needle is 0.25 mm. Between the tank and the capillary tube is a miniature
solenoid valve (Lee Co., CT). Initially the valve is closed, and then is rapidly opened



Translating bubbles with stagnant caps of surfactant 23

and closed by application of an electronic pulse. The nitrogen, which is pushed into
the stream, flows out of the needle; as it emerges from the needle’s tip, it is broken
into small segments by the liquid flow. The sizes of the gas segments formed can
be controlled by adjusting the gas and liquid flow rates. We find that with this tube
insert we can form segments with equivalent spherical radii as low as 0.3–0.8 mm.
After the segments are created, the flow is stopped and one segment is observed under
magnification with a stereo microscope (Nikon, NY).

To obtain magnified images of the slugs in the capillary, the capillary is placed
horizontally in a petri dish filled with water in order to minimize optical distortion,
and the objective of the microscope is positioned above the capillary. The index of
refraction of the water on the outside of the capillary, and of the glycerol/water
mixture on the inside, is approximately equal to that of the capillary wall so that
the wall of the tube nearly disappears in the magnified image and the curvature
of the capillary does not distort images of the slug in the radial compared to the
axial direction. The slug appears dark due to the difference in indices of refraction
between the air and the glycerol/water mixture. An example is given in the inset of
figure 11. The mixture generally wets the inside surface of the quartz capillary (though
not always perfectly, see below) so the slug in the magnified image is composed of
a cylindrical plug with two ends which resemble outwardly extending sections of
spheres (gravitational effects have a negligible effect on the menisci shape for our
small bore capillary).

The microscope image is video recorded using a CCD camera (Dage MTI, IN) and
digitized (using a VG-5 Scion Frame Grabber on a Macintosh G3 computer with a
pixel resolution of 640 (horizontal, along tube axis) × 480 (vertical, perpendicular to
the axis)) to obtain a digital image. The volume of the slug is computed from the
digital image as the sum of two terms. The first is the volume of the plug section
and is obtained by multiplying the length of the slug by π(rc)

2 where rc is the radius
of the capillary. The radius of the precision bore capillary is 0.5 mm accurate to
less than 0.1 % (information as provided by the manufacturer). (Note that we ignore
any contributions to wetting layers surrounding the slug; these layers develop as the
slug moves. When the slug is stopped the wetting layer drains to the bottom of the
capillary as the gas slug rises to the top of the tube and contacts the wall. This
residual liquid is then removed by capillary pressure since the pressure in the liquid
underneath the long horizontal plug is of order 1/rc less than the gas slug pressure
while the pressure at the ends is of order 2/rc less than the gas pressure. We wait a
few minutes for the liquid to drain.) The length of the slug is obtained by scanning
pixel-by-pixel the intensity in a direction along the tube axis at the inside diameter
of the tube to locate the contact points of the menisci with the wall. A calibration
recticule is used to obtain the pixels mm−1 calibration factor and convert the length
in pixels to physical dimensions; in this recticule, ruler markings separated by 2 mm
in the horizontal direction digitally span approximately 200 pixels and are used to
obtain the calibration factor. The second contribution to the slug volume are the
volumes Vend of the sections of the spheres and are given by

Vend = π
1

cos3 θc

rc
3

[
2

3
− sin θc +

sin3 θc

3

]
(4.1)

where θc is the contact angle the glycerol/water mixture subtends with the capillary
wall as measured through the liquid phase. The contact angles are measured by
either inspection of the intersection of the meniscus with the capillary, or by fitting



24 R. Palaparthi, D. T. Papageorgiou and C. Maldarelli

the meniscus to a circle, computing the radius of the circle, rt , and determining the
contact angle from cos(θc) = rc/rt . For pure glycerol/water mixtures, or mixtures with
very low concentrations of surfactant (< 10−1 mg l−1), the contact angles are equal to
zero as the mixture wets the capillary wall, and the ends of the slug are hemispheres.
In this case, the volume is calculated assuming a slug shape consisting of hemispheres
with radius rc at the ends of a cylindrical section. However for higher concentrations,
the contact angle as measured from the images is non-zero and the exact formula for
the ends of the slug is used. It is important to note that the contributions due to the
hemispherical ends are an important portion of the entire bubble volume.

From these details of the calculation of the bubble volume, we can also estimate the
error in the measurement of the equivalent spherical radius. For the clean bubbles,
and bubbles in a continuous phase with concentrations less than or equal to 10−1 mg
l−1, the contact angles are zero and the contributions of the end caps to the volume are
accurately described as 4

3
πrc

3. The errors in the volume measurement result from the
error in the measurement of the slug length which varies from 25 pixels (for the 0.3 mm
bubbles) to 400 pixels (for the 0.6 mm bubbles). (The bubbles in the range of 0.7 mm
to 0.8 mm were imaged under a lower magnification but with equal accuracy as the
0.6 mm bubbles.) The menisci intersections in the measurement of the slug length can
be located to within a pixel at either end; so the error in the length varies from ± 8 %
for the 0.3 mm bubbles to ± 0.5 % for the 0.6 bubbles. The calibration factor has a
similar error of 2 pixels in 200 or 1 %, so the error in the calculation of the length
of the bubbles in millimetres is approximately 9% for the 0.3 mm bubbles down to
1.5 % for the bubbles in the range of 0.6–0.8 mm. Thus the error in the measurement
of the equivalent spherical radius is 1/3 of these errors or approximately 3 % for
the 0.3 mm bubbles down to less than 1 % for the 0.6–0.8 bubbles. For the higher
surfactant concentrations for which only bubbles in the range of 0.6–0.8 mm were
used, the contact angles were not zero so the error in the measurement of the contact
angle will propagate to the calculation of the endcap volume. However the endcap
volumes are 10 % or less of the total volume for the 0.6–0.8 mm bubbles, so their error
is not as important as the error in the volume of the cylindrical plug, and the error in
the equivalent radius is again less than 1 % as it was for the surfactant-free bubbles
0.6 mm–0.8 mm in radius. The radii used in the calculation of the drag coefficient (see
below) is corrected for the expansion of the gas bubble due to the decrease in the
hydrostatic pressure as the bubble rises in the chamber.

Once the bubble has been formed and its volume measured, the syringe pump is
used to push the test segment out of the capillary and into the vertical chamber where
it begins to rise. The chamber consists of a vertical quartz tube, 25 mm in diameter
(Wilmad Glass, NJ) and 70 cm in length. The upper part, where the bubble motion
is recorded, is of square cross-section to minimize optical distortion. To minimize
surfactant contamination, care is taken in the selection of all the materials for the
apparatus so that the experimental fluid comes in contact with only stainless steel or
teflon, or a viton polymer (equilibrated with the liquid being used). Contact with the
surrounding air is also minimized, and all glassware is cleaned with Nochromix. Since
the viscosity of the liquid being used is a function of temperature, the temperature is
carefully monitored in the course of the experiment by a probe dipped in the quartz
cell.

For velocity measurements, the bubble motion is recorded with two CCD cameras
(Dage MTI, IN) located a known distance apart (170 mm). The first camera is located
at a height of approximately 55 cm above the tip of the capillary tube from where the
bubble starts to rise. A parallel beam of light from a collimating lens provides the
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back lighting for each camera. The lens on the camera is a Cosmicar television lens
f/1.4 25 mm adjusted to a magnification such that the field of view is approximately
5 mm. Both these cameras are connected to the VG-5 Scion Frame Grabber on the
Macintosh G3. Instantaneous bubble velocities can be measured at each of the two
locations by capturing successive digital images (480 (in the direction of motion of the
bubbles) × 640 pixel resolution) while the bubble remains in the field of view of the
camera and tracking the motion of the centre of mass. The cameras digitize images
every 1/30 s (times of capture for each image, from a common starting point for both
cameras, are printed on the digitized video frame by the frame grabber board and are
accurate to much less than 1%). The even and odd line compositions of the capture
are executed in half that time or 1/60 s, and we use the even or odd compositions
to locate the bubble position and centre of mass. Bubbles travel with a velocity
of approximately 10 mm s−1 (for the 0.3 mm radius bubbles) to 60 mms−1 (for the
0.8 mm radius bubbles) (see figure 12) so bubbles move a distance of 1/6 mm to 1 mm
during the capture. This could lead to blurring; however the cameras are equipped
with electronic shutters with speeds up to 1/50 000 s which were used to reduce the
blur. An example of the video captured image of the rising bubble, demonstrating
the clear focus, is given in the inset of figure 11. The field of view in the cameras
is approximately 5 mm so the minimum time the bubbles are in the field of view
is 5/60 s, and on average there are at least 5 frames (even or odd) captured for
each passage of the bubble. To measure the instantaneous velocity, the first and last
frames of the bubble in the field of view are used; the centres of mass are on average
separated by half the field of view or 120 pixels (since even and odd fields have verical
spans of (1/2)480 pixels), and with an error to locate in the centre of mass of one
pixel each, the error in the velocity is 2/120. The digitized images were calibrated by
using spheres of known size; these spheres of 1.5 mm in diameter (accurate to better
than 0.1 %) scanned approximately 160 pixels in diameter (full field since a static
measurement) so the error in the calibration measurement is 2/160 % and the error
in the instantaneous velocity measurement is 3 %.

Average terminal velocities are measured by dividing the distance between video
cameras by the time elapsed between captures of the bubbles on the cameras. Markings
on the chamber are in the field of view of each camera; the distance between these
markings is 170 mm and is measured accurate to within 1 mm. As a bubble rises, each
camera records (with even or odd line composition) at least five bubble frames. The
centres of mass are located to within a pixel, and the distance between the centre
of mass and the marking in the field of view is measured in pixels and converted to
millimetres (with submillimetre accuracy). To compute the average velocity we divide
the distance between the bubbles (as obtained by noting the distance the centres
of mass are from the markings) by the recorded time; since the accuracy in the
marking measurement is 1/170, the error in the velocity is approximately 1 %, which
is smaller than the 3 % error in instantaneous velocity. The instantaneous velocities
are compared with the average to verify that the bubble has reached a terminal
velocity; in practice the average and instantaneous velocities are within one or two
percent of each other verifying that steady state has been achieved.

From the digitized images, the radius of the bubble can also be directly calculated,
although with an error greater than that realized from the microscope measurement.
The diameter measured by the video cameras capturing the bubble motion is of the
order of 30 pixels for the smallest sized bubbles to 85 pixels for the largest bubbles.
The error therefore in the radius ranges from 2 % to 7 % (assuming a one pixel
error in the measurement of the diameter at either end of the bubble), and with
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an error of 2/160 in the calibration, so the composite error in the measurement of
the radius in approximately 3–8 %. This compares with an error of less than 1–3 %
for the microscope measurement. Nevertheless after correction of the microscope
measurement for expansion, the radii of the bubbles as measured with the microscope
in the capillary were always within a few percent of the measurement by the cameras
tracking the bubble motion.

In the experiments reported it is important that the bubbles reach a steady-
state velocity in order to compare with the calculations of the steady-state velocity.
While we noted above that verification is obtained by comparing the average and
instantaneous velocities, several other studies confirm that the bubble rise distance of
55 cm to the first camera is large enough to allow the bubbles to come to steady state.
Simulations of the unsteady motion of clean bubbles by Liao & McLaughlin (2000a)
for Reynolds numbers between approximately 55 and 260, indicate that the time scale
to steady-state decreases from 60a/U to 40a/U for Re ranging from about 260 to 55.
As our experiments have Re= O(1), the time scale is smaller than that computed in
Liao & McLaughlin (2000a). In our experiments the time to reach the first camera is
of order L/U , where L is the distance the bubble travels before the first measurement
is taken and is 55 cm; thus the ratio of the hydrodynamic equilibration (40a/U or
less) to L/U is 40a/L which is less than 0.1.

As a last consideration, the bubbles translate in a chamber and we need to examine
any corrections of rise velocities due to the walls because we compare experiments
with simulations with an unbounded geometry. The diameter of the chamber is 25 mm
and for the measurements reported in this paper the largest bubbles are 1.6mm in
diameter giving a maximum aspect ratio λ= 0.06. Clift et al. (1978) report a correction
to the terminal velocity for λ=0.6 and Re =O(1) less than 2 %, so that we can safely
neglect wall effects.

The drag coefficient is obtained from the velocity measurement by equating
the buoyancy force to the hydrodynamic drag (formulated as the drag coefficient
multiplied by the normalizing scale 2πµa):

CD =
2a2ρg

3µU
. (4.2)

Densities (as measured with the Troemner densiometer) are accurate to 1 % and
viscosities (as measured using a Haake Couette viscometer) are accurate (judging
from the reproducibility of the measurements) to within 1%. With errors in the
terminal velocity of 1 % (we use the average velocity and radius as measured at the
microscope station), a composite error of 5 % in the drag is realized (as the bubble
radius enters as the square in the formulae) for the 0.6–0.8 mm bubbles. For the clean,
smaller bubbles the error approaches 9% for bubbles of radii 0.3 mm.

4.2. Measurements of terminal velocities for surfactant-free bubbles

Our first step is to use our apparatus to measure bubble rise velocities in the absence
of surfactants dissolved in the continuous phase, and to compare these results with
previously established theoretical ones. A successful comparison indicates that our
cleaning procedures are adequate, and all calibrations are accurate. These results
also form a basis for our subsequent experiments in which surfactant is added to
the continuous phase. In figure 12 we show the rise velocities of bubbles plotted as
a function of their size. These velocities are the average of the three values: two
instantaneous velocities from the two cameras at two different heights and the third
from the time of rise of the bubble between the two. Since these measurements differ
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Figure 12. Bubble rise velocities in a surfactant-free 70:30 glycerol/water mixture (�).
Comparison with the theoretical prediction by equation (4.3) shown by the dashed line.

by one or two percent, we conclude that these bubbles have reached their steady
state. We note that the Weber and capillary numbers (We and Ca) for these bubbles
are of order 10−2, while the Reynolds number Re is of order 1. So we do not expect
to see any inertial or viscous effects deforming the bubbles. This is confirmed by the
video images of the rising bubbles (see the inset of figure 11), which indicate spherical
shapes.

Also plotted in figure 12 are the predicted rise velocities of these bubbles from the
numerical work of Magnaudet, Rivero & Fabre (1995). A correlation for the drag
coefficient CD(Bubble) from their simulations (but using the viscous scale for the drag
coefficient) for a spherical bubble is given by

CD(Bubble) =
2a2ρg

3µU
= 2(1 + 0.15(2Re)0.5). (4.3)

The predicted velocities are obtained by solving this equation for U . From the same
reference the drag coefficient for a solid sphere CD(Solid) is given by

CD(Solid) =
2a2ρg

3µU
= 3(1 + 0.15(2Re)0.687). (4.4)

We note that only bubbles of sizes greater than 0.5 mm rise with velocities agreeing
with the predicted values. Smaller sized bubbles rise with velocities less than the
predicted values, but larger than those for corresponding solid spheres, because of the
presence of trace amounts of impurities present in our system despite our thorough
cleaning procedure. Hence, we only consider bubbles of sizes greater than 0.5 mm
radius. Maxworthy et al. (1996) also investigated the rise velocity of air bubbles in
ostensibly clean glycerol/water mixtures of varying compositions. They found similar
results to ours, i.e. only sufficiently large bubbles had drag coefficients in agreement
with the clean interface correlations.
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4.3. Experimental results

In this section we report measurements of the drag coefficient as a function of the bulk
concentration of the surfactant C12E6. The experiments are done for low concentra-
tions equal to 10−3 mg l−1 to around 103 mg l−1 (10 times the CMC of the surfactant).
For the C12E6 surfactant we have measured the equation of state and the dependence
of the surface tension on the bulk concentration by using the pendant bubble technique
for the air/glycerol–water mixture, and have fitted these data to the Frumkin equation
of state (2.5) and the adsorption isotherm Γo/Γ∞ = (βC0/α)/((βC0/α)+exp(KΓo/Γ∞))
which follows from equation (2.8) under equilibrium conditions, to obtain values of K ,
Γ∞ and the ratio α/β . These values are given in table 1. In addition, dynamic surface
tension experiments were undertaken to obtain values for the diffusion coefficient and
the kinetic constants. In these experiments, the relaxation in tension as surfactant
adsorbs onto an initially clean pendant bubble interface was measured, and compared
to predictions from solutions to the surfactant mass transfer in order to obtain meas-
urements of the transport coefficients. Only a lower bound could be established for
the kinetic rate constants due to the fact that the high viscosity of the solution reduces
the diffusion coefficient and makes the diffusion process rate-limiting. These lower
bound values are also given in table 1, and the experiments are reported in Palaparthi,
Papageorgiou & Maldarelli (2006). For all the experiments reported here the value of
χ(exp(KΓo/Γ∞) + k)/Pe1/2 is much smaller than one and so the diffusion limitation
alone places these experiments in the stagnant cap regime. Values of the Biot number
are dependent upon the desorption rate constant, and the lower bound we have
measured gives a minimum value for the Biot number of the order of 10−4. Hence, even
if the kinetic rates are a few orders of magnitude larger, the Biot number is still small.
Thus, kinetic limitations also force the bubble motion into the stagnant cap regime.

Figure 13 plots the drag coefficient CD (divided by the drag coefficient for a solid
sphere CD(Solid) as given by equation (4.4) for the same Re) as a function of surfactant
bulk concentration for different bubble radii, where the drag coefficient CD is calcu-
lated from equation (4.2). At each concentration, a data point with a prescribed bubble
radius represents the average of the drag coefficients of bubbles with bubble radii
within ±2 % of the stated value. The results show the typical qualitative behaviour
we would expect from the theory, see for example figure 6. In particular CD/CD(Solid)

increases from that of a clean bubble (i.e. approximately 0.6), through intermediate
values (corresponding to partial stagnant caps of increasing size) and reaches the value
for a completely immobile, surface (i.e. 1). These results verify that partial stagnant
caps whose size increases with bulk concentration can be observed experimentally. As
we summarized in the Introduction, measurements of terminal velocities of rising air
bubbles in surfactant solutions usually report velocities corresponding to completely
rigid surfaces. The present experiments demonstrate that if the surfactant concentra-
tions are sufficiently low and impurities are removed, bubble velocities corresponding
to partial caps can be achieved. We also note from these experiments that at any given
surfactant bulk concentration where there is a significant separation in the scaled drag
(concentrations less than 0.1 mg l−1), smaller sized bubbles behave more like solids
than larger sized bubbles. As mentioned earlier, smaller bubbles, simply because of
their small radii, have reduced clean terminal velocities and correspondingly larger
Marangoni numbers relative to larger bubbles. As a result of the larger Ma for the
smaller bubbles, the cap angle is larger and the corresponding drag coefficient is in-
creased relative to that for larger bubbles. We also note that at the lowest two concen-
trations studied, we could expect a change in the bulk concentration of the surfactant
solution due to the adsorption of the surfactant at the air/liquid and liquid/glass
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Figure 13. Effect of the surfactant concentration (C12E6) on the drag coefficient (divided by
the drag coefficient for a solid sphere CD(Solid) at the same Re as given by equation (4.4)).

interfaces of our apparatus. We calculated this change in the bulk concentration of the
surfactant as Γ∞Ac/Vc, where Ac and Vc are the total surface area and volume of the
vertical chamber where the bubbles rise. With the surface area/volume of our appar-
atus of 0.0155 m−1, and Γ∞ =4.48 × 10−6 mol m−2, the change in the bulk concentra-
tion becomes 6.94 × 10−8 molm−3 (or 3.13 × 10−5 mg l−1) which is two orders of mag-
nitude less than the smallest concentration used here. Hence this change is negligible.

We can compare the experiments quantitatively to the theory in the following ways.
The average values for the non-dimensional groups corresponding to the experiments
in figure 13 are those tabulated in table 1, and these were used in the simulations.
The exact values of the groups for a particular bubble rise experiment differ from the
average values because different sized bubbles were used, and a range in velocities
was measured (as well as variations in viscosity due to the fact that the temperatures
were not the same for each experiment). We note that using the average values,
the simulations predict for diffusion-limited conditions that the critical concentration
necessary to completely immobilize the interface is approximately 0.3 from figure 10,
which dimensionally corresponds to a concentration of 0.12 mg l−1. The inclusion
of kinetic effects will increase this value (figure 9). From figure 13 we note that
the bubble interfaces become completely stagnant at approximately 0.1 mg l−1, in
qualitative agreement. Given the fact that the behaviour of the scaled drag coefficient
with concentration has a near zero slope as the completely rigid surface is approached
(the scaled drag coefficient for diffusion-limited transport changes from 95 to 100 over
a range in k from 0.06 to 0.3, figure 9) and the drag coefficient is measured to within
5 %, a more quantitative comparison is not possible. However, a more quantitative
comparison of theory and experiment can be undertaken at concentrations for which
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CD theoretical values
CD

Radius (mm) Re Ma Pe × 106 χ Measured Bi → ∞ 10 × Bimin Bimin

k = 0.0024
0.611 0.83 10.4 1.34 0.124 2.73 2.65 2.61 2.42
0.626 0.88 10.0 1.42 0.127 2.76 2.63 2.59 2.40

k = 0.024
0.619 0.81 12.2 1.3 0.125 3.27 3.42 3.40 3.19
0.605 0.76 12.6 1.24 0.123 3.23 3.43 3.43 3.22
0.635 0.83 11.5 1.34 0.129 3.27 3.39 3.36 3.18

Table 2. Comparison of measured drag coefficients with theoretical computations.

the cap angle is much less than 180◦, and the drag coefficient is not asymptotically
approaching the solid value. This comparison can also be used to understand the role
of kinetics. We focused on the two lowest concentrations (k = 0.0024 and 0.024) in
the experiments reported in figure 13, and we choose the experiments with Reynolds
numbers that are approximately within 10 % of 0.91. Recall that the value of 0.91 was
used in our numerical fluid mechanical simulations to calculate the drag coefficient as
a function of the cap angle. Note also that a change in Re of 10 % around Re = 0.91
has a negligible influence on the scaled drag coefficient (see figure 7). The bubble
radii selected which meet this criterion are listed in table 2. For each experiment,
the Reynolds, Péclet, Marangoni and χ parameters are computed and tabulated. For
each set of these parameters, the value of k corresponding to selected values of the
cap angle (and therefore drag coefficient) are computed as described in the Appendix.
This results in plots of the drag coefficient as a function of k as given for example
in figure 6. By interpolating these plots the drag coefficient for the particular k of
the experiment is obtained and tabulated in table 2 for diffusion-limited conditions,
a Biot number (Bimin) corresponding to the lower bound for α found from dynamic
tension experiments (see table 1), and a value of Bi ten times this minimum.

Consider first the lower concentration, k = 0.0024. Table 2 shows that the measured
drag coefficient is consistently larger than the diffusion-limited value obtained from
the simulations, even accounting for the variation due to the 5 % error in CD . Since
surface kinetics can only decrease the drag coefficient, this result indicates that at
this very low concentration the bubbles may be influenced by contamination and the
effective value of k is larger than that due solely to the addition of the polyethoxylated
surfactant. For the higher concentration (k = 0.024), the measured drag coefficient lies
between the dynamic-tension-determined value for the minimum value of the Biot
number (Bi= Bimin) and 10 × Bimin, suggesting strongly that kinetics is important in
the effect of surfactant on the retardation in the bubble motion, and providing a finite
bound for the kinetic rate constants. We have estimated the error in the measurement
of the drag coefficient as ±5 % which is a value of approximately 0.16. As this
value is approximately equal to the difference in the drag coefficients for Bimin and
10 × Bimin, only a finite bound for Bi can be achieved. In general, however, these results
suggest that measurements of velocities of bubbles with stagnant caps can be used as a
paradigm to measure the kinetic rate constants in cases where (as here) they cannot be
resolved in dynamic tension experiments. In the dynamic tension experiments for the
system used here, the relaxation in tension was measured as surfactant adsorbs onto
an initally clean pendant bubble interface. The surfactant transport was modelled,
and from comparison of the predicted tensions to the simulations, the process was
shown to be diffusion controlled (Palaparthi et al. 2006). A lower bound for the
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kinetic constants was established by determining the value of the kinetic constants in
mixed kinetic/diffusive transport simulations which yield dynamic tension relaxations
which are identical (to the experimental accuracy) to the diffusion-limited case; greater
values for the kinetic constants are then large enough so that the kinetic transport is
much faster than the diffusion process and the overall transport is diffusion limited.
Note from table 2 how the value of the Biot number necessary for kinetics to be fast
enough so that the drag coefficient (and hence the retardation) is diffusion limited
is approximately ten times larger than the value necessary for the dynamic tension
relaxation process to be diffusion limited. Thus the diffusive transport is faster in the
case of bubble motion when compared to adsorption onto an initially clean interface,
and this larger rate allows the observation of an effect of kinetics on the bubble
motion and a resolution of the kinetic constants. These ideas are examined further in
the related study Palaparthi et al. (2006).

We note finally from figure 13 that the interface remains completely stagnant as
the concentration is increased from the critical value of ≈ 0.1 mg l−1 through CCMC

and up to 10 × CCMC (the highest concentration studied). For concentrations up to
the CMC, this experimental result is consistent with the scaling arguments presented
in the Introduction since at the CMC, χ(exp KΓo/Γ∞ + k)/Pe1/2 = 0.033 and the
bulk diffusion limitation alone can maintain the concentration gradient necessary
to completely immobilize the surface. In addition, the exchange kinetics is slow;
at the CMC, Bimin{k + exp(KΓo/Γ∞)} ≈ 0.05. For concentrations above the CMC,
the interface remains immobile as seen from figure 13. Above the CMC, micelles
exchange with monomer in the bulk to maintain an equilibrium in which the bulk
concentration is uniform and equal to the CMC. If the rate of this exchange is
fast relative to convection and diffusion of the unaggregated surfactant, the sublayer
concentration of monomer can become uniform, providing a remobilizing effect on
the interfacial velocity as long as the surface kinetics is fast. For the case of this
surfactant, the fact that the interface remains immobile above the CMC may be due
to the relatively slow surface exchange kinetics which may offset the remobilization
effect of the micellar exchange.

5. Conclusions
This study is a theoretical and experimental investigation of the effect of soluble

surfactants on the motion of a bubble rising in a continuous liquid phase. We have
examined the stagnant cap regime in which the rate of kinetic and diffusive transport
of surfactant to the bubble interface is much slower than the rate at which surfactant
is convected along the surface. Under these conditions and when surface diffusion is
negligible, adsorbed surfactant is convected to a well-defined cap at the trailing edge
of the rising bubble, while the front end remains surfactant-free.

Simulations were undertaken for spherical bubbles rising with order-one Reynolds
numbers. The surfactant transport includes both finite kinetic exchange between the
sublayer and the surface and diffusive and convective transport in the continuous
phase at high Péclet numbers. We calculated the stagnant cap angle and corresponding
flow and drag coefficient, as a function of the bulk concentration (for given surfactant
transport parameters, Bi, Ma, χ , Pe). Our numerical results show that with the
addition of even trace amounts of surfactant, the behaviour of the bubble changes
from that with a completely stress-free interface to one with a completely stagnant
interface, as seen by the change in the drag coefficient on the bubble. In addition, we
demonstrate that for a fixed bulk concentration, the effect of kinetics is to reduce the
cap angle, and hence the drag, relative to the diffusion-limited case.
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Experiments were also undertaken to compare with the theoretical predictions.
Terminal velocities of buoyantly rising bubbles in a 70:30 glycerol–water mixture
were measured as a function of the bulk concentration of a polyethelene oxide
surfactant (C12E6) dissolved in the continuous phase. Owing to the high viscosity of
the mixture and the small size of bubles formed in our apparatus (about 0.3–0.8 mm in
radius), bubble velocities are small enough to make the Weber and capillary numbers
of order 10−2; the bubble, therefore, experiences negligible distortion as we confirmed
visually. The Reynolds numbers are approximately equal to 1 in the experiments. We
measured the rise velocity, taking precautions that the bubbles were at steady state,
as a function of bulk concentration. Our results show drag measurements of rising
bubbles which are intermediate between a completely clean interface and a completely
immobile one (i.e. stagnant caps with angles between 0 and 180◦). The data show
an increase in drag with bulk concentration and confirm the theoretical prediction
that only a small bulk concentration is necessary to produce a completely immobile
surface. To compare the data with the simulations we first measured independently the
adsorption characteristics and diffusion coefficient of the surfactant for the glycerol–
water mixture, using dynamic surface tension measurements obtained by the pendant
bubble method. The dynamic tension experiments provide only a lower bound on the
values of the kinetic coefficients α and β . We compared the measured drag coefficients
to simulations at a low concentration at which the interface is partially immobilized,
and found that the kinetic constants lie between the minimum value established by
the dynamic tension measurements, and one an order of magnitude higher. This result
suggests the possibility of using experiments involving the measurement of the drag
on a bubble rising in a surfactant solution in the stagnant cap regime to measure the
kinetic rate constants of a surfactant.

The work of C.M. was supported by NASA Grant NAG32167 and NAG32720.
The work of D.T.P. was supported by NSF Grants DMS-0072228 and DMS-9872008.

Appendix. Numerical method of solution
In this Appendix we describe our numerical methods and the algorithm used to

obtain steady solutions to our model. As we are particularly interested in obtaining
results that can be compared directly with our experiments, the code described below
is capable of producing results at high Péclet numbers and order-one Reynolds
numbers.

A.1. Spatial approximations and time advancement

A finite volume method is employed to discretize the unsteady Navier–Stokes
equations and the bulk surfactant transport equations (2.1)–(2.3). The momentum
equations are solved in primitive variables, that is velocity and pressure variables. A
staggered mesh, as shown in figure 14 is employed. The location of the nodes for the
different variables is chosen as follows. The nodes for the concentration field C in
the radial direction start at the bubble surface (r =1) and end at the outer edge of
the numerical domain (r = r∞), while the nodes in the θ-direction start at θ = 0 and
end at θ = π. The nodes for the surface concentration Γ coincide with those of C on
the bubble surface. The nodes for the radial velocity component u, follow the nodes
for C but are staggered in the θ-direction so that a u-node is placed midway between
neighbouring C nodes at a given radial position. It follows, then, that there are no
u-nodes on the symmetry axes θ =0 and θ = π. The radial locations for the v-nodes
are staggered relative to the C-nodes so that they are located midway between two
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Figure 14. Typical staggered mesh for the finite volume method.
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C-nodes. Hence, the first v-node is located just below the surface of the bubble (r < 1 –
this is a fictitious point), and the last v-node is positioned at r < r∞ midway between
the last and second to last C-nodes. In the θ-direction the v-nodes are positioned at
the same azimuthal locations as the C-nodes. Hence, they start from θ = 0 and end at
θ = π. The control volumes for each of these variables are identified such that the node
for that variable is placed at the centre of the control volume. This is shown in the
top part of figure 14. The nodes for the pressure are located midway between those
for u and v as shown in figure 14 (note that the first pressure node is off the bubble
surface). In the top part of figure 14, the west side could represent the bubble surface.

The discretization of the momentum and concentration equations is achieved as
follows. The radial and azimuthal components of the Navier–Stokes equations (2.1),
are written in forms which facilitate a finite volume implementation, and which treat
the convective and part of the viscous terms semi-implicitly in order obtain linear
equations, as shown below:
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The surfactant concentration equation becomes (treating convective terms explicitly)

∂C

∂t
+ ∇ ·

(
Cvn − 1

Pe
∇C

)
= 0. (A 3)

In the above vn = uner + vneθ is the velocity field evaluated at the previous time step.
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The concentration field equation (A 3) is integrated over its control volume and
discretized in time over a time-step �t . The result is
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In the first term C denotes the value at the center of the cell. Here dAi is the
area of face i, where i = east, west, north, south of the control element of volume
dV . In discretizing the area terms (without upwinding) which contain C and either
∂C/∂r or ∂C/∂θ , values of C from immediately adjacent cells are used. For the
velocities at time level n, an average from the four u- or v-nodes surrounding the
midpoint of the particular surface, is taken (see Griebel, Dornseifer & Neunhoeffer
1998). Because of the large values of the Péclet number we found it beneficial to
use a hybrid upwinding scheme to evaluate derivatives of cell faces, as described by
Patankar (1980). To complete the discretization, boundary conditions are adjoined
to the control volumes adjacent to boundaries. Along the surface of the bubble,
the balance of diffusive and kinetic fluxes is applied, with the surface concentration
determined from the mass balance. Their incorporation is described in more detail in
§ A.3. Along the symmetry axis we have

∂C

∂θ
= 0, θ = 0, π (symmetry). (A 5)

Along the outer boundary of the computational domain, since the convection term
dominates, the surfactant condition (2.10) at infinity is not applied directly but
implemented in a different way in which different conditions are used at the inlet and
outlet (see figure 2):

C = 1, 0 < θ < π/2 (inlet), (A 6)

∂C

∂z
= 0, π/2 < θ < π (outlet). (A 7)

The outflow conditions on C are used in order to accurately model the solute wake that
is present in the vicinity of the downstream axis of symmetry, at high Péclet numbers.
Such boundary conditions have been used successfully in the related thermocapillary
migration problem, at high Marangoni numbers, by Balasubramaniam & Lavery
(1989) and Ma, Balasubramanian & Subramanian (1999).

For the solution of either (A 1) or (A 2) a projection method (see Chorin 1968) is
used as described next. Time advancement by �t from level n to n + 1 is achieved
in two steps: In the first half-step, the momentum equations are considered without
the pressure gradient terms and integrations over corresponding control volumes are
carried out. For (A 1) and (A 2) we write
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where (u∗, v∗) is the first approximation to the solution. The construction of the various
terms over the bounding faces of a given cell is carried out using the averages and
upwinding schemes described above. The boundary conditions necessary to complete
the discretization are the zero normal velocity and tangential stress conditions on
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the surface of the bubble (which are described in more detail in § A.3), symmetry
conditions on the z-axis and the matching to the free-stream velocity (2.9) at the end
of the computational domain r∞. The matching at the outer boundary is done directly.
Implementation of the stress boundary condition at the bubble surface requires the
calculation of a radial derivative; owing to the way the θ-component of the velocity,
v, is situated this necessitates the location of the fictitious point on the inside of the
bubble surface as we mentioned earlier.

In the usual application of the method (see references above), all the convective
and viscous terms are treated explicitly making it unnecessary to specify boundary
conditions on u∗ and v∗ on the bubble surface, on the symmetry lines and at the
bounding surface at infinity. We have constructed a semi-implicit time discretization
that enables stability for larger time steps (see Peyret & Taylor 1983, for example). The
terms treated semi-implicitly are those which are easily cast into conservative form
so that their numerical evaluation by the volume of fluid method is straightforward.
Owing to this method, boundary conditions are needed for u∗ and v∗, and we take
these to be the physical boundary conditions. We also note that the choice u∗ = 0 on
the boundary is consistent with that for the solution of the pressure Poisson equation,
where it is used to obtain a unique solution (to within an arbitrary constant) for the
pressure – see below for details.

In the second half-step only the pressure gradient contributions of (A 1) and (A 2)
are considered in the time discretization. The pressure P n+1 at time level n + 1 is
calculated from the fact that the velocity vn+1 is divergence free:
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∇P n+1 = 0, (A 10)
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Note that the method is consistent as �t → 0.
In the Poisson equation (A 11) for the pressure, the right-hand side is known from

the previous step. Integrating (A 11) over a pressure cell (see top part of figure 14)
results in the following equation:(
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To evaluate the pressure gradient ∂P/∂r , say, on the east face of the pressure cell,
the values of P at the P -nodes on the east and west sides of the cell are used. The
fluxes on the right-hand side of (A 12) are easily evaluated since the normal velocity
on each face is known because of the staggering (see figure 14). A key step in the
implementation of (A 12) is the specification of a boundary condition for the pressure
on the west side of the first box, i.e. on the bubble surface. This is discussed in
detail in Griebel et al. (1998), and in what follows we give a brief outline specific
to our calculation. In general ∂P/∂r is given by the radial component of equation
(A 10); by substituting this into (A 12) we note that u∗ at the bubble surface cancels
out of the equation, indicating that u∗ on the bubble surface can be arbitrarily
chosen. This can also be done at the outer bounding surface of the computational
domain. We choose u∗ = un+1 to make ∂P/∂r =0 on the bubble surface and at the
outer bounding surface, where we note that matching with the free-stream values
provides the boundary condition un+1 = − cos θ . On the symmetry lines θ = 0, π, we
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have ∂P/∂θ =0, also. Our Poisson equation (A 11), then, is to be solved subject to the
Neumann boundary condition n · ∇P n+1 = 0, where n is the outward pointing normal
to the computational domain. A solution will exist (to within an additive constant)
as long as the compatibility condition is satisfied∫

C

n · ∇P n+1ds =

∫ ∫
D

2Re

�t
∇ · v∗ dx. (A 13)

The right-hand side is proportional to the line integral
∫

C
n · vn+1 ds which is seen to be

zero since un+1 = 0 on the bubble surface and the symmetry lines, and un+1 = − cos θ

at the outer boundary yielding a zero contribution there also. These observations and
the existence of a solution to the Poisson equation result from the incompressibility
of the flow vn+1.

Numerical solutions for u, v and C are updated over a time step by employing the
ADI scheme (Alternating Directions Implicit Method). For example, u∗ and v∗ are
calculated from time level n to level n + 1 by using the ADI method, resulting in
tridiagonal solvers (details can be found in Peyret & Taylor 1983, for example). At
a given time level, the Poisson equation for the pressure P n+1 must be solved and
this is achieved by employing a sparse matrix solver using the conjugate gradient
method. Such schemes are highly efficient and this accelerated the computation times
signifiantly. Once the solution P n+1 is found, the velocity field vn+1 follows from
the identity (A 10). The steady state is assumed to be reached once the variation in
quantities like u, v, C, is less than 0.01 % when measured 50 time steps apart.

A.2. Grid construction

Directly creating a grid on the physical domain (r, θ) requires an expanding mesh.
We therefore use a grid based on a (x, y) coordinate system which transforms the
physical domain into a rectangular domain through the logarithmic transformation
x = ln(r) and the linear transformation y = θ/π. Grid spacing is then set-up with even
divisions in �x and �y. The magnitudes of the dimensionless groups are chosen to
correspond with those of our experiments, so that we may model these experimental
results. These are given in table 1. We note, however, that the Reynolds number, Re
is of order one, and the Péclet number, Pe is of order 106. At such moderate values
of the Reynolds number there are no significant boundary layer effects that would
require more points near the surface, and in fact we found that the clustering inherent
in the logarithmic transformation provides sufficient accuracy in computing the fluid
dynamics. To avoid any artificial confinement of the flow by the outer boundary, the
outer limit of the grid is fixed to correspond to r∞ which is as large as 80 bubble radii.
A 50 × 50 regular grid in (x, y) is used for the fluid dynamics in all the simulations
reported here, unless otherwise stated.

Considering the transport of the surfactant from the bulk to the interface, the
convective terms are dominant since the Péclet numbers are large (of order 106).
For a fluid–fluid interface, at large Péclet numbers, there are steep gradients in the
surfactant concentration field inside a boundary layer near the bubble surface. The
thickness of this concentration boundary layer scales as Pe−1/2 (Acrivos & Goddard
1965), and so a finer mesh is required near the bubble surface. To account for these
large concentration gradients, we construct a hybrid grid to discretize the surfactant
convection–diffusion equation. This grid is linear in r , extending from the surface of
the bubble to a distance of order Pe−1/2 and contains ten grid points. The edge of
this inner mesh is made to coincide with the first radial grid line of the exponential
coarse grid used for the fluid mechanics. Interpolated velocities at the concentration
nodes are used in the solution of the concentration problem. We used a cubic spline



Translating bubbles with stagnant caps of surfactant 37

80

(a)

(b)

0 806060 4040 2020

80

60

40

20

0

–1.5 –1.0 –0.5 0 0.5 1.0 1.5

1.5

1.0

0.5

0

Figure 15. Numerical grid. (a) General view, (b) refinement near the bubble surface to
numerically resolve the concentration boundary layer.

interpolation for this purpose. In addition, due to the smallness of the solute boundary
layer, the numerical solution for the concentration can be confined to a smaller outer
radius. We found from numerical experiments designed to validate the code (see
below), that this outer boundary can be confined to about five bubble radii, with a
coarser exponential grid of 100 × 100 and a fine inner mesh of 10 × 100. Figure 15(a)
shows an example of an exponential grid for the velocity and in 15(b) the enlarged
view of the finer mesh near the surface of the bubble used for the surfactant bulk
concentration.

A.3. Algorithm for the numerical solution

The algorithm used to obtain the drag exerted on a rising bubble as a function of the
surfactant bulk concentration is as follows.

(a) For given values of the cap angle φ and Reynolds number Re, the hydrodynamic
flow around a spherical bubble with a solid cap of this size is solved using the time
advancement as described above until steady state is reached. This is done using
the mixed boundary conditions on the bubble surface of zero shear stress or zero
tangential velocity (equations (2.14) and (2.16)), zero normal velocity on the bubble
surface and matching to the far-field uniform flow (2.9). These conditions entirely
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prescribe the flow in terms of the fixed Reynolds number Re. The shear stress on the
bubble surface (τs(θ; φ), see equation (2.16)) is calculated at the surface concentration
nodes and stored. In the evaluation of the drag, from equation (2.11), we need to
know the pressure at the bubble surface. Since there is no pressure node on the bubble
surface in the staggered grid used in the algorithm, pressure values are calculated using
a three-point polynomial extrapolation. Normal stresses (τrr ) which are only known
at pressure nodes, are also extrapolated on the surface using the same procedure.

(b) Once the shear stress distribution on the solid part of the cap is computed, the
surface concentration Γ (θ; φ) on the cap is obtained from the tangential stress balance
equation (2.17) for given values of Ma and K . This involves a numerical integration
of the shear stress followed by a root-finder to calculate the surface concentration at
a given node.

(c) Using the calculated surfactant surface concentration distribution on the cap
region, the surfactant distribution in the continuous phase is calculated. This needs a
value of the surfactant bulk concentration k. To start with, a value of k is guessed.
When the kinetic exchange is fast (Bi � 1) the sublayer and surface are in equilibrium,
and the dimensionless sublayer concentration can be calculated directly from the
surface distribution as (see (2.18))

C(1, θ) =
1

k

[
Γ (θ; φ)eKΓ (θ ;φ)

1 − Γ (θ; φ)

]
, π − φ < θ < π,

C(1, θ) = 0 0 < θ < π − φ


 . (A 14)

(d) With the sublayer concentration known and given a Péclet number, the
distribution of surfactant in the continuous phase is obtained by solving the
convection–diffusion equation with the velocity given by the hydrodynamic solution
for the cap angle φ. The net flux to the bubble surface, given by the Nusselt number
Nu (see equation (2.19)), is then computed from the surfactant distribution in the
continuous phase. The first derivatives on the surface of the bubble required in
estimating the net flux of surfactant to the bubble surface (as given by (2.19)), and
which is needed to solve for the surfactant transport equation, are calculated using
three-point formulas.

At steady state, the amount of surfactant adsorbing at the front end of the bubble,
should balance the amount desorbing at the back end, hence implying that Nu is
zero. In the results presented here, we assume convergence in k, if the absolute value
of Nu is less than 0.1. This convergence criterion is due to the fact that at high Péclet
numbers, Nu is of order Pe1/3 to Pe1/2 (the former estimate for a solid and the latter
for a clean fluid interface). For our Péclet numbers, Nu is of order 102–103, unless
k has the value satisfying the steady-state zero-flux condition. If the net flux is not
converged to within this accuracy, the value of k is changed, and steps (c) to (d) are
repeated, in an iterative manner, until Nu converges to its null steady-state value.
Once convergence is reached, the cap angle and drag for particular values of k, Pe,
Ma and K are known and noted. Steps (a) to (d) are repeated for different cap angles
to get the drag as a function of k in the entire stagnant cap regime (0 < φ < π).

In situations where we have kinetic–diffusive transport (that is Bi is no longer
asymptotically large), the quasi-equilibrium equations (A 14) are replaced by the
balance between the kinetic and diffusive fluxes (equations (2.15) and (2.18)). The
surfactant distribution in the continuous phase is then solved with the above two
conditions, and the net flux to the surface is calculated as described previously in
steps (a)–(d).
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Figure 16. Drag coefficient on a spherical bubble as a function of Reynolds number.
Comparison of the results of our simulations with those in previous studies.

Reynolds number Re 0 1 10 100

Drag coefficient on a spherical bubble
Hadamard-Ribczynnski (1911) 2.00
Ryskin & Leal (1982) 2.33 3.53 5.50
Present study 1.99 2.20 3.46 5.15

Drag coefficient on a solid sphere
Stokes value 3.00
Magnaudet et al. (1995) 3.72 6.52 19.13
Present study 3.12 3.67 6.46 19.29

Table 3. Drag coefficient on a spherical bubble and a solid sphere as a function of Reynolds
number. Comparison of results from the present study and earlier works.

A.4. Model validation

As a first test, in figure 16, the drag coefficient CD on a spherical bubble with a clean
interface (the drag non-dimensionalized by the viscous scale 2πµa) is calculated for
different Reynolds numbers (0.1–10) and compared with the results of Ryskin & Leal’s
(1982) and the expression of Magnaudet et al. (1995) (CD(Bubble) = 2(1 + 0.21Re1/2))
correlated from their numerical simulations and valid for Re less than 25. A further
comparison of Ryskin & Leal’s (1982) and our results at different Re = 0, 1, 10 and 102

is shown in table 3. Using a 50 × 50 grid with r∞ =80, the values of the drag predicted
by the present simulation differ from those of the earlier works by about 5 % or less.
We computed the drag on a solid sphere, with a no-slip boundary condition on the
surface, to within approximately 1 % of those of previous work of Magnaudet et al.
(1995) see also table 3.
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Figure 17. Drag coefficient against cap angle for Re= 0, 1.82 and 100.
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Figure 18. Scaled drag coefficient against cap angle for Re= 0, 1.82 and 100.

For the stagnant cap case, we compared the results of the present simulations
at zero Reynolds number with the analytical solution given by Sadhal & Johnson
(1982). With a 50 × 50 grid, we obtain drags, at different stagnant cap angles, to 5 %
accuracy. These results are plotted for CD , and a scaled drag coefficient C∗

D , the latter
defined as

C∗
D = 100

[
CD − CD(Bubble)

][
CD(Solid) − CD(Bubble)

] , (A 15)

against the cap angle, in figures 17 and 18 respectively. The quantities CD(Bubble) and
CD(Solid) are the drags corresponding to a clean and solid interface respectively, and
these are also obtained numerically using our code for non-zero Reynolds numbers.
Also plotted are the results for order-one Reynolds number. We note that all the
results exhibit similar features, indicating that the Reynolds number has a secondary
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Figure 19. Verification of the code for surfactant bulk transport. Comparison of the results
from our simulations with asymptotic and analytical solutions for the mass transfer rates (Nu)
of a passive scalar to the bubble surface, for the case of a given creeping flow past the bubble
when the bubble surface acts as a sink.

effect on the scaled drag coefficient. The main contribution to the drag on the bubble
changes when the stagnant cap angle increases from around 50◦ to 110◦. From figure
18, we note that with increasing Reynolds number, the drag coefficient increases more
steeply with cap angle near the equator of the bubble, as also observed by others
(Magnaudet et al. 1995; Takemura & Yabe 1999).

Solving the problem of the transport of a passive scalar in creeping flow conditions
past a bubble with a stress-free interface, when the bubble acts as a sink, checks
the code for the surfactant bulk transport equation. The Nusselt number defined by
(2.19) gives the net scalar flux to the bubble surface. We found good agreement, for
the Nusselt number, between our solution of the surfactant bulk transport problem
with a given creeping flow and the asymptotic results of Acrivos & Goddard (1965)
for the range of Péclet numbers of our interest (of orders 103–106) – see figure 19.
Note that for the calculation shown in this figure, at zero and low Péclet numbers, we
used a numerical domain extending to 80 bubble radii. But at higher Péclet numbers
(> 103) a domain extending to 5 bubble radii is found to be sufficiently accurate with
grids of size 110 × 100 (a 100 × 100 exponential grid coupled with a 10 × 100 linear
grid spread within the solute boundary layer close to the surface of the bubble as
explained earlier).
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